Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymeric membranes offer an appealing solution for sustainable CO capture, with potential for large-scale deployment. However, balancing high permeability and selectivity is an inherent challenge for pristine membranes. To address this challenge, the development of mixed matrix membranes (MMMs) is a promising strategy. MMMs are obtained by carefully integrating porous nano-fillers into polymeric matrices, enabling the simultaneous enhancement of selectivity and permeability. In particular, metal-organic frameworks (MOFs) have gained recognition as MMM fillers for CO capture. Here, a review of the current state, recent advancements, and challenges in the fabrication and engineering of MMMs with MOFs for selective CO capture is proposed. Key considerations and promising research directions to fully exploit the gas separation potential of MOF-based MMMs in CO capture applications are highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833178PMC
http://dx.doi.org/10.3762/bjnano.16.14DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
mixed matrix
8
matrix membranes
8
capture
5
review metal-organic
4
frameworks polymers
4
polymers mixed
4
membranes
4
membranes capture
4
capture polymeric
4

Similar Publications

Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.

View Article and Find Full Text PDF

A key challenge in capturing CO from postcombustion gases is humidity due to competitive adsorption between CO and HO. Multivariate (MTV) metal-organic frameworks (MOFs) have been considered a promising option to address this problem, e.g.

View Article and Find Full Text PDF

Galvanizing waste-derived Zn-induced defective Fe-based metal-organic frameworks as superior adsorbent for enhanced antibiotic removal.

Environ Res

September 2025

College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll

The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.

View Article and Find Full Text PDF

To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.

View Article and Find Full Text PDF

In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.

View Article and Find Full Text PDF