A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Computational Phenotyping of Cognitive Decline With Retest Learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Cognitive change is a complex phenomenon encompassing both retest-related performance gains and potential cognitive decline. Disentangling these dynamics is necessary for effective tracking of subtle cognitive change and risk factors for Alzheimer's Disease and Related Dementias (ADRD).

Method: We applied a computational cognitive model of learning and forgetting to data from Einstein Aging Study (EAS; n = 316). EAS participants completed multiple bursts of ultra-brief, high-frequency cognitive assessments on smartphones. Analyzing response time data from a measure of visual short-term working memory, the Color Shapes task, and from a measure of processing speed, the Symbol Search task, we extracted several key cognitive markers: short-term intraindividual variability in performance, within-burst retest learning and asymptotic (peak) performance, across-burst change in asymptote and forgetting of retest gains.

Results: Asymptotic performance was related to both mild cognitive impairment (MCI) and age, and there was evidence of asymptotic slowing over time. Long-term forgetting, learning rate, and within-person variability uniquely signified MCI, irrespective of age.

Discussion: Computational cognitive markers hold promise as sensitive and specific indicators of preclinical cognitive change, aiding risk identification and targeted interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214872PMC
http://dx.doi.org/10.1093/geronb/gbaf030DOI Listing

Publication Analysis

Top Keywords

cognitive change
12
cognitive
10
cognitive decline
8
retest learning
8
computational cognitive
8
cognitive markers
8
computational phenotyping
4
phenotyping cognitive
4
decline retest
4
learning
4

Similar Publications