Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the 'Apollo Implant', an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a 'payload' module which is attached to the probe and is recoverable, and a 'docking' module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835385PMC
http://dx.doi.org/10.7554/eLife.98522DOI Listing

Publication Analysis

Top Keywords

neuropixels probes
12
freely moving
12
chronic neuropixels
8
recorded neurons
8
probes implanted
8
mice freely
8
probes
7
implant
5
adaptable reusable
4
reusable light
4

Similar Publications

A key challenge in neuroscience is understanding how neurons in hundreds of interconnected brain regions integrate sensory inputs with previous expectations to initiate movements and make decisions. It is difficult to meet this challenge if different laboratories apply different analyses to different recordings in different regions during different behaviours. Here we report a comprehensive set of recordings from 621,733 neurons recorded with 699 Neuropixels probes across 139 mice in 12 laboratories.

View Article and Find Full Text PDF

Electrophysiological implants enable exploration of the relationship between neuronal activity and behavior. These technologies evolve rapidly, with multiple iterations of recording systems developed and utilized. Chronic implants must address a litany of complications, including retention of high signal-to-noise ratio in probes and the ability to withstand excess force over the experimental period.

View Article and Find Full Text PDF

Vocal communication is a complex social behavior that entails the integration of auditory perception and vocal production. Both anatomical and functional evidence have implicated the anterior cingulate cortex (ACC), including area 32, in these processes, but the dynamics of neural responses in area 32 during naturalistic vocal interactions remain poorly understood. Here, we addressed this by recording the activity of single area 32 neurons using chronically implanted ultra high density Neuropixels probes in freely moving male common marmosets () engaged in an antiphonal calling paradigm in which they exchanged long-distance "phee" calls with a virtual conspecific.

View Article and Find Full Text PDF

Objective: The Neuropixels probe, a high-density silicon microelectrode array, has been a transformative tool for extracellular recording of large numbers of single neurons across animal models. Traditional tungsten microelectrodes available for clinical neurophysiology typically only record 1-2 neurons at a given time. Human intraoperative Neuropixels recording increases access to single-neuron spiking by an order of magnitude and is poised for rapid adoption.

View Article and Find Full Text PDF

Short- and long-term modulation of rat prefrontal cortical activity following single doses of psilocybin.

Mol Psychiatry

August 2025

School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK.

We quantify cellular- and circuit-resolution neural network dynamics following therapeutically relevant doses of the psychedelic psilocybin. Using chronically implanted Neuropixels probes, we recorded local field potentials (LFP) alongside action potentials from hundreds of neurons spanning infralimbic, prelimbic and cingulate subregions of the medial prefrontal cortex of freely-behaving adult rats. Psilocybin (0.

View Article and Find Full Text PDF