A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Triple-Additive Strategy for Enhanced Material and Device Stability in Perovskite Solar Cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The stability of the FAPbI perovskite phase is significantly affected by internal strain. In this report, additives in the perovskite precursor solution are designed to prevent local lattice mismatch of the resulting perovskite layer. Instead of using a conventional methylammonium chloride (Control), triple additives (Target) are introduced by considering ion association and formation energy. The out-of-plane orientation for the (100) plane is less pronounced by the triple additives compared to the Control film with a highly enhanced preferred orientation, which reduces the strain gradient and the Pb─I bond distance. Moreover, the anisotropic atomic-level lattice strain along (111) plane, associated with the α-to-δ phase transition, is more uniformly distributed by the triple additives. The triple-additive strategy demonstrates exceptional phase stability under relative humidity as high as 90% and the International Summit on Organic Photovoltaic Stability (ISOS)-L-2 protocol. The device lifetime measured under the ISOS-D-1 condition shows that the Target perovskite solar cell (PSC) maintains 95% of its initial power conversion efficiency (PCE) for over 8000 h, and the best PCE of 24.50% is achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202413712DOI Listing

Publication Analysis

Top Keywords

triple additives
12
triple-additive strategy
8
perovskite solar
8
perovskite
5
strategy enhanced
4
enhanced material
4
material device
4
stability
4
device stability
4
stability perovskite
4

Similar Publications