Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The intestinal microbiome is essential in regulating host muscle growth and development. Antibiotic treatment is commonly used to model dysbiosis of the intestinal microbiota, yet limited research addresses the relationship between gut microbes and muscle growth in yellow-feathered broilers. In this study, Xinghua chickens were administered broad-spectrum antibiotics for eight weeks to induce gut microbiome suppression. We investigated the relationships between the gut microbiome and muscle growth using 16S rRNA sequencing and transcriptomic analysis. Results indicated that antibiotic treatment significantly reduced body weight, dressed weight, eviscerated weight, and breast and leg muscle weight. Microbial diversity and richness in the duodenum, jejunum, ileum, and cecum were significantly decreased. The relative abundances of Firmicutes, Actinobacteria, and Bacteroidetes declined, while Proteobacteria increased. This microbial imbalance led to 298 differentially expressed genes (DEGs) in muscle tissue, of which 67 down-regulated genes were enriched in skeletal muscle development, including MYF6, MYBPC1 and METTL21C genes essential for muscle development. The DEGs were primarily involved in the MAPK signaling pathway, calcium signaling pathway, ECM-receptor interaction, actin cytoskeleton regulation, and nitrogen metabolism. Correlation analysis showed that dysregulation of the cecal microbiome had the most substantial effect on muscle growth and development. Furthermore, intestinal microbiome dysregulation reduced DNMT3b and METTL21C mRNA expression in muscle tissue, lowered overall DNA methylation and SAM levels, and induced methylation changes that impacted skeletal muscle development. This study demonstrates that gut microbiota influence DNA methylation in muscle tissue, thereby associated with muscle growth and development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874558 | PMC |
http://dx.doi.org/10.1016/j.psj.2025.104869 | DOI Listing |