A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Variation in Layer-Specific Tear Properties of the Human Aorta Along Its Length and Circumference: Implications for Spatial Susceptibility to Dissection Initiation. | LitMetric

Variation in Layer-Specific Tear Properties of the Human Aorta Along Its Length and Circumference: Implications for Spatial Susceptibility to Dissection Initiation.

J Biomech Eng

Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephesiou Street, Athens 115, Greece.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hemodynamic variations influence the location of entry tears in aortic dissection. This study investigates whether variations in tear strength across the human aorta contribute to these clinical manifestations. Circumferential and axial strips were collected from nine axial and two circumferential sites along each autopsied aorta, yielding 1188 samples (11 aortas × 18 sites × 2 directions × 3 layers per site). These samples underwent tear testing to assess tear strength and tear energy, constituting resistance to tear propagation. Adventitial tear parameters were significantly higher than those of the intima and media, with no significant differences between the latter two, supporting the observation that entry tears typically occur in the inner wall. Tear propagation angles were approximately 15 and 75 deg for circumferential and axial medial strips, and 30 and 45 deg for circumferential and axial strips of the intima and adventitia, with minimal variation along the aorta. These findings indicate that the media, and to a lesser extent the other layers, have higher resistance to axial tearing compared to circumferential tearing, aligning with the clinical observation of circumferentially directed tears. Intimal and adventitial tear parameters increased modestly along the aorta, while medial parameters varied less, explaining why entry tears rarely originate in the abdominal aorta. Tear parameters in inner and outer quadrants were similar at most axial locations, except for dissimilar tear propagation angles of the intima and adventitia in the proximal aorta (especially the arch), explaining why entry tears seldom involve the entire circumference.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4067912DOI Listing

Publication Analysis

Top Keywords

entry tears
16
circumferential axial
12
tear propagation
12
tear parameters
12
tear
11
human aorta
8
tear strength
8
axial strips
8
adventitial tear
8
propagation angles
8

Similar Publications