Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Disease risk prediction models play an important role in preventing disease developments in modern healthcare. However, the lack of focus on high-risk patients has hindered the large-scale practical application of these models, especially considering the limitation of medical resources available for following up on patients who are deemed high-risk. In this study, we propose a novel and practical approach that focuses on minimizing the number of false positive observations among high-risk patients by introducing the -. The solution is to estimate the weights of the highest scores with a differentiable estimation of the sorting operation and apply the weights to the loss function. We extracted 253,680 survey responses from a public dataset of the U.S. health survey system to define a diabetes prediction task. This study employs nested cross-validation as well as an aggregated model applied to an independent test set to systematically evaluate the proposed method. Compared with traditional binary cross entropy loss and Focal loss, the Highest- loss improved the precision (positive predictive value) for the highest 1% scores by 0.05 (95% CI: 0.041-0.055), the highest 5% scores by 0.03 (95% CI: 0.024-0.032), and the highest 10% scores by 0.02 (95% CI: 0.016-0.021). The introduced Highest- loss function addresses the problem of prevailing risk prediction models and offers a practical solution that focuses on patients with the highest predictive scores who can realistically receive an intervention as opposed to the entire patient population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821551 | PMC |
http://dx.doi.org/10.1109/bibm58861.2023.10385816 | DOI Listing |