Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The posterior cruciate-retaining (CR) design offers rotational freedom but risks abnormal kinematics and instability. The medial pivot (MP) design mimics native joint motion with a high-conformity medial and flat lateral interface. Within clinical studies, the MP design outclassed the CR design, but biomechanical studies are lacking. This study investigates the tibiofemoral and patellofemoral kinematics of both implant designs compared to native kinematics.

Methods: Eight fresh-frozen cadaveric knee specimens underwent total knee arthroplasty using MP and CR designs. Testing was performed in a dynamic knee rig simulating active knee flexion (30-130°) under muscle load. Biomechanical assessments included tibial rotation, tibiofemoral translation, patellar tilt/shift, patellofemoral contact/pressure patterns and quadriceps force. Functional regressions were used to analyse the effects of the component designs on the native situation.

Results: The MP design exhibited increased tibial rotation (130° flexion: MP 9.4° vs. CR 6.6°) and lateral anterior tibial translation during flexion (130° flexion: MP 25.8 mm vs. CR 22.6 mm). Both designs showed no significant differences in patellar tilt or shift and similar patellofemoral pressure (CR 3.2 MPa, MP 3.4 MPa) and contact patterns (CR 213.8 mm vs. MP 230.4 mm). The MP design required lower quadriceps force, particularly in deep flexion (NS 452.6 N, CR 407.8 N and MP 367.3 N).

Conclusion: The MP design provides a more native-like knee kinematic profile than the CR design, with a more pronounced MP motion pattern and reduced quadriceps loading.

Level Of Evidence: Not applicable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205411PMC
http://dx.doi.org/10.1002/ksa.12624DOI Listing

Publication Analysis

Top Keywords

design
9
medial pivot
8
cruciate-retaining design
8
total knee
8
knee arthroplasty
8
tibial rotation
8
quadriceps force
8
130° flexion
8
knee
6
flexion
5

Similar Publications

Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.

View Article and Find Full Text PDF

Why transport matters: an update on carrier proteins in Apicomplexan parasites.

Curr Opin Microbiol

September 2025

Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:

The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.

View Article and Find Full Text PDF

Objectives: Participation rates in fecal immunochemical test (FIT)-based colorectal cancer (CRC) screening differ across socio-demographic subgroups. The largest health gains could be achieved in subgroups with low participation rates and high risk of CRC. We investigated the CRC risk within different socio-demographic subgroups with low participation in the Dutch CRC screening program.

View Article and Find Full Text PDF

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF