98%
921
2 minutes
20
This substudy of the phase III NETTER-1 trial evaluated [Lu]Lu-DOTATATE (hereafter Lu-DOTATATE) for advanced midgut neuroendocrine tumors and aimed to assess dosimetry of a standard 4-cycle protocol and any potential relationship to toxicity. Change in tumor size by absorbed dose was an exploratory endpoint. Patients with locally advanced or metastatic, well-differentiated, midgut neuroendocrine tumors were enrolled in this substudy between August 2013 and January 2016. Patients were scheduled to receive 4 infusions of 7.4 GBq of Lu-DOTATATE for a cumulative injected activity of 29.6 GBq. After a Lu-DOTATATE infusion, whole-body planar images (4-6 time points for up to 7 d) and SPECT/CT images (at 24 and/or 48 h) were acquired, and absorbed and time-integrated activity coefficients were calculated to derive dosimetry. Blood and urine samples were used to determine the blood clearance and activity elimination rate. Tumor absorbed dose was derived using a sphere model, interpolating Lu dose factors on the basis of each lesion mass. Tumor size was assessed by measuring the longest and perpendicular dimensions on CT at measured time points. Dosimetric assessments were evaluated in 20 patients. Organ dosimetry showed substantial interpatient variability. The predicted mean cumulative absorbed doses to kidneys and bone marrow were 19.4 (SD, 8.7) and 1.0 (SD, 0.8) Gy, respectively. Three patients had kidney doses between 28 and 33 Gy; 2 had grade 1 increased serum creatinine, and 1 showed no evidence of renal toxicity (up to 5 y of follow-up). Hematologic toxicity was primarily mild or moderate (grade 1-2) with no increase over time or association with cumulative absorbed dose. Tumor kinetics in 65 lesions demonstrated stable activity over time. Inter- and intrapatient variability was observed, and the median cumulative absorbed dose was 134 Gy (range, 7-2,218 Gy). Acknowledging the limitations of the imaging methods used and tumor volume assessments, we found no correlation between the best tumor size reduction and the absorbed dose, though most tumors (90%) shrank over the 72-wk study period. The dosimetry data support the findings that the standard treatment regimen with Lu-DOTATATE that includes personalized adjustments according to acute toxicity assessments is well tolerated and manageable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876735 | PMC |
http://dx.doi.org/10.2967/jnumed.124.268903 | DOI Listing |
Comput Struct Biotechnol J
August 2025
Institut de Recherche en Cancérologie de Montpellier (IRCM), Équipe Labellisée Ligue Contre le Cancer, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
Digital twins (DTs) are emerging tools for simulating and optimizing therapeutic protocols in personalized nuclear medicine. In this paper, we present a modular pipeline for constructing patient-specific DTs aimed at assessing and improving dosimetry protocols in PRRT such as therapy. The pipeline integrates three components: (i) an anatomical DT, generated by registering patient CT scans with an anthropomorphic model; (ii) a functional DT, based on a physiologically-based pharmacokinetic (PBPK) model created in SimBiology; and (iii) a virtual clinical trial module using GATE to simulate particle transport, image simulation, and absorbed dose distribution.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Internal Clinic, 3rd Medical Faculty, Charles University and University Thomayer Hospital, Prague, Czechia.
Objectives: The absorption of conventional cholecalciferol may be impaired in patients with inflammatory bowel disease (IBD). The bioavailability and optimal dosing of buccally absorbable nanoemulsion vitamin D in this population remain unclear. This study aimed to compare the effects of buccal nanoemulsion and conventional oral vitamin D supplementation on serum 25-hydroxyvitamin D (25OHD) levels in patients with IBD.
View Article and Find Full Text PDFIndian J Nucl Med
August 2025
Department of Physics, Shi.C., Islamic Azad University, Shiraz, Iran.
Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
September 2025
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Background: To evaluate predictors of outcomes in colorectal liver metastases (CLM) patients undergoing 90Y radioembolization (TARE), focusing on the impact of tumor absorbed dose.
Materials And Methods: Patients' characteristics and dosimetry assessments were analyzed in 231 patients undergoing 329 TARE sessions from 09/2009 to 07/2023. Response was assessed using RECIST1.
Radiat Environ Biophys
September 2025
Environmental Physics Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, Budapest, Hungary.
Variability in radiation-related health risk and genetic susceptibility to radiation effects within a population is a key issue for radiation protection. Besides differences in the health and biological effects of the same radiation dose, individual variability may also affect dose distribution and its consequences for the same exposure. As exposure to radon progeny affects a large population and has a well-established dose-effect relationship, investigating individual variability upon radon exposure may be particularly important.
View Article and Find Full Text PDF