A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Occurrence, distribution, and prioritization of unregulated emerging contaminants including battery-related chemicals in drinking water systems across South Korea. | LitMetric

Occurrence, distribution, and prioritization of unregulated emerging contaminants including battery-related chemicals in drinking water systems across South Korea.

Sci Total Environ

Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigated the presence of 95 emerging contaminants comprising pharmaceuticals, stimulants, artificial sweeteners, nicotine metabolites, corrosion inhibitors, battery-related pollutants, and pesticides across 70 drinking water treatment plants. Battery-related contaminants (lithium, nickel, and cobalt), with total concentrations raging from 424 to 38,500 ng/L (median 2560 ng/L) in the raw water and from 596 to 34,300 ng/L (median 2510 ng/L) in the treated water, showed the highest detection frequencies (≥99 %). The median levels of nickel (1440 ng/L in raw water and 1620 ng/L in treated water) were higher than those of lithium (591 ng/L in raw water and 445 ng/L in treated water) and cobalt (233 ng/L in raw water and 95.3 ng/L in treated water). Organic contaminants (raw water: 33.6-6540 ng/L, median 827 ng/L; treated water: not detected-1900 ng/L, median 121 ng/L) mostly had lower total levels than battery-related chemicals. Telmisartan (median 36.6 ng/L in raw water and median 7.47 ng/L in treated water) and valsartan acid (median 26.3 ng/L in raw water and median 6.61 ng/L in treated water) were the predominant pharmaceuticals. For corrosion inhibitors, benzothiazole (29.0 ng/L in raw water and 7.21 ng/L in treated water) displayed the highest median concentrations. Bentazone (median 119 ng/L) was the most predominant pesticide in raw water. The distribution patterns of contaminants in raw water were related to various pollution sources in industries, agricultural zones, and daily life. Additionally, rainfall increased the inflow of lithium, nickel, cobalt, and benzothiazole into public waterways. According to the human health risk assessment using the maximum levels of contaminants, lithium, nickel, cobalt, and valsartan acid were the priority contaminants in treated water, indicating potential risks or need for further evaluation. The priority contaminants with high or moderate risks to aquatic ecosystems in raw water were three battery-related chemicals, six pharmaceuticals, and five pesticides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.178799DOI Listing

Publication Analysis

Top Keywords

raw water
44
treated water
36
water
22
battery-related chemicals
12
lithium nickel
12
nickel cobalt
12
median
11
raw
11
treated
9
contaminants
8

Similar Publications