98%
921
2 minutes
20
The amniote pallium contains sensory circuits that are structurally and functionally equivalent, yet their evolutionary relationship remains unresolved. We used birthdating analysis, single-cell RNA and spatial transcriptomics, and mathematical modeling to compare the development and evolution of known pallial circuits across birds (chick), lizards (gecko), and mammals (mouse). We reveal that neurons within these circuits' stations are generated at varying developmental times and brain regions across species and found an early developmental divergence in the transcriptomic progression of glutamatergic neurons. Our research highlights developmental distinctions and functional similarities in the sensory circuit between birds and mammals, suggesting the convergence of high-order sensory processing across amniote lineages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adp3411 | DOI Listing |
J Anat
September 2025
Department of Anatomy and Cell Biology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan.
The white matter of the spinal cord is essential for sensory and motor signaling, and its proper development is crucial for establishing functional neuronal circuits. However, the mechanisms underlying white matter formation remain incompletely understood. We hypothesized that the extracellular matrix, particularly laminins, plays a key role in this process.
View Article and Find Full Text PDFSci Adv
September 2025
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
The locus coeruleus-norepinephrine (LC-NE) system regulates arousal and awakening; however, it remains unclear whether the LC does this in a global or circuit-specific manner. We hypothesized that sensory-evoked awakenings are predominantly regulated by specific LC-NE efferent pathways. Anatomical, physiological, and functional modularities of LC-NE pathways involving the mouse basal forebrain (BF) and pontine reticular nucleus (PRN) were tested.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDFCommun Biol
September 2025
Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.
View Article and Find Full Text PDF