A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of Trace Sc Addition on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Zr Alloy. | LitMetric

Effect of Trace Sc Addition on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Zr Alloy.

Materials (Basel)

Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transition element microalloying is important for improving the properties of Al-Zn-Mg-Cu alloys. Nevertheless, along with its high costs, increasing Sc content generates a harmful phase, limiting the strength of the alloy. In this experiment, we reduced the amount of Sc added to a Zr-containing Al-Zn-Mg-Cu alloy by one order of magnitude. The microstructure and mechanical properties of the alloys were studied by means of tensile tests, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The findings indicate that the alloys' mechanical properties were progressively enhanced with the increase in Sc content from 0 to 0.04%. After adding 0.04% Sc, the tensile strength and yield strength of the Al-Zn-Mg-Cu-Zr-Sc alloy increased by 20.9% and 24.3%, reaching 716 MPa and 640 MPa, respectively, and the elongation decreased, but still reached 12.93%. The strengthening mechanisms of the trace addition of Sc are fine grain strengthening and precipitate and disperse strengthening, and Al(Sc, Zr) particles hinder the dislocation and grain boundary movement. Drawing on insights from other studies on Sc microalloying in Al-Zn-Mg-Cu alloys, this experiment successfully reduced the amount of Sc added by an order of magnitude, the alloys properties were improved, and the effect of strengthening remained good.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820551PMC
http://dx.doi.org/10.3390/ma18030648DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
trace addition
8
microstructure mechanical
8
al-zn-mg-cu alloys
8
experiment reduced
8
reduced amount
8
order magnitude
8
electron microscopy
8
properties
5
addition microstructure
4

Similar Publications