A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

mRNA Degradation as a Therapeutic Solution for Mucopolysaccharidosis Type IIIC: Use of Antisense Oligonucleotides to Promote Downregulation of Heparan Sulfate Synthesis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mucopolysaccharidosis type IIIC is a neurodegenerative lysosomal storage disorder (LSD) characterized by the accumulation of undegraded heparan sulfate (HS) due to the lack of an enzyme responsible for its degradation: acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT). Classical treatments are ineffective. Here, we attempt a new approach in genetic medicine, genetic substrate reduction therapy (gSRT), to counteract this neurological disorder. Briefly, we used synthetic oligonucleotides, particularly gapmer antisense oligonucleotides (ASOs), to target the synthesis of the accumulated compounds at the molecular level, downregulating a specific gene involved in the first step of HS biosynthesis, . Our goal was to reduce HS production and, consequently, its accumulation. Initially, five gapmer ASOs were designed and their potential to decrease mRNA levels were tested in patient-derived fibroblasts. Subsequent analyses focused on the two best performing molecules alone. The results showed a high inhibition of the gene mRNA (around 90%), a decrease in xylosyltransferase I (XT-I) protein levels and a reduction in HS storage 6 and 10 days after transfection (up to 21% and 32%, respectively). Overall, our results are highly promising and may represent the initial step towards the development of a potential therapeutic option not only for MPS IIIC, but virtually for every other MPS III form. Ultimately, the same principle may also apply to other neuropathic MPS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818647PMC
http://dx.doi.org/10.3390/ijms26031273DOI Listing

Publication Analysis

Top Keywords

mucopolysaccharidosis type
8
type iiic
8
antisense oligonucleotides
8
heparan sulfate
8
mrna degradation
4
degradation therapeutic
4
therapeutic solution
4
solution mucopolysaccharidosis
4
iiic antisense
4
oligonucleotides promote
4

Similar Publications