Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A promising approach to accelerating the development of innovative anti-cancer therapies involves the evaluation of natural plant compounds. In this study, we focused on examining the effects of () methanolic root and stem infusions on the activity of five target genes-, , , , and -using colorectal cancer (CRC) cell lines (Caco-2). The plant extracts were prepared for testing by dissolving them in dimethyl sulfoxide (DMSO) after undergoing a step-by-step extraction process. Caco-2 cells were then treated with different concentrations of the extracts, and RNA was extracted and purified for analysis. Our results demonstrated a dose-dependent relationship between the phytoconstituents of and the overexpression of , along with the downregulation of , , , and genes. This suggests that acts as a potent natural inhibitor of CRC progression. Given the potential clinical benefits, we propose the use of methanolic root and stem extracts as promising organic inhibitors for CRC tumorigenesis, with more in vitro studies warranted to validate and expand on our findings. Additionally, we recommend further studies to identify and characterize the specific metabolites in that contribute to the modulation of pathways responsible for inhibiting CRC growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819982 | PMC |
http://dx.doi.org/10.3390/nu17030471 | DOI Listing |