A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ferric Ammonium Citrate Reduces Claudin-5 Abundance and Function in Primary Mouse Brain Endothelial Cells. | LitMetric

Ferric Ammonium Citrate Reduces Claudin-5 Abundance and Function in Primary Mouse Brain Endothelial Cells.

Pharm Res

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Iron overload is implicated in many neurodegenerative diseases, where there is also blood-brain barrier (BBB) dysfunction. As there is a growing interest in the role of iron in modulating key BBB proteins, this study assessed the effect of iron on the expression and function of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and claudin-5 in primary mouse brain endothelial cells (MBECs) and their abundance in mouse brain microvessel-enriched membrane fractions (MVEFs).

Methods: Following a 48 h treatment with ferric ammonium citrate (FAC, 250 µM), MBEC protein abundance (P-gp, BCRP and claudin-5) and mRNA (abcb1a, abcg2, and cldn5) were assessed by western blotting and RT-qPCR, respectively. Protein function was evaluated by assessing transport of substrates H-digoxin (P-gp), H-prazosin (BCRP) and C-sucrose (paracellular permeability). C57BL/6 mice received iron dextran (100 mg/kg, intraperitoneally) over 4 weeks, and MVEF protein abundance and iron levels (in MVEFs and plasma) were quantified via western blotting and inductively coupled plasma-mass spectrometry (ICP-MS), respectively.

Results: FAC treatment reduced P-gp protein by 50% and abcb1a mRNA by 43%, without affecting H-digoxin transport. FAC did not alter BCRP protein or function, but decreased abcg2 mRNA by 59%. FAC reduced claudin-5 protein and cldn5 mRNA by 65% and 70%, respectively, resulting in a 200% increase in C-sucrose permeability. In vivo, iron dextran treatment significantly elevated plasma iron levels (2.2-fold) but did not affect brain MVEF iron content or alter P-gp, BCRP or claudin-5 protein abundance.

Conclusions: Iron overload modulates BBB transporters and junction proteins in vitro, highlighting potential implications for CNS drug delivery in neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880181PMC
http://dx.doi.org/10.1007/s11095-025-03826-2DOI Listing

Publication Analysis

Top Keywords

mouse brain
12
bcrp claudin-5
12
iron
9
ferric ammonium
8
ammonium citrate
8
primary mouse
8
brain endothelial
8
endothelial cells
8
iron overload
8
neurodegenerative diseases
8

Similar Publications