Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Landslides pose significant threats to ecosystems, lives, and economies, particularly in the geologically fragile Sub-Himalayan region of West Bengal, India. This study enhances landslide susceptibility prediction by developing an ensemble framework integrating Recursive Feature Elimination (RFE) with meta-learning techniques. Seven advanced machine learning models- Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Extremely Randomized Trees (ET), Gradient Boosting (GB), Extreme Gradient Boosting (XGBoost), and a Meta Classifier (MC) were applied using Remote Sensing and GIS tools to identify key landslide-conditioning factors and classify susceptibility zones. Model performance was assessed through metrics such as accuracy, precision, recall, F1 score, and AUC of the ROC curve. Among the models, the Meta Classifier (MC) achieved the highest accuracy (0.956) and AUC (0.987), demonstrating superior predictive ability. Gradient Boosting (GB), XGBoost, and RF also performed well, with accuracies of 0.943 and AUC values of 0.987 (GB and XGBoost) and 0.983 (RF). Extremely Randomized Trees (ET) exhibited the highest accuracy (0.946) among individual models and an AUC of 0.985. SVM and LR, while slightly less accurate (0.941 and 0.860, respectively), provided valuable insights, with SVM achieving an AUC of 0.972 and LR achieving 0.935. The models effectively delineated landslide susceptibility into five zones (very low, low, moderate, high, and very high), with high and very high susceptibility zones concentrated in Darjeeling and Kalimpong subdivisions. These zones are influenced by intense rainfall, unstable geological structures, and anthropogenic activities like deforestation and urbanization. Notably, ET, RF, GB, and XGBoost demonstrated efficiency in feature selection, requiring fewer input variables while maintaining high performance. This study establishes a benchmark for landslide susceptibility mapping, providing a scalable and adaptable framework for geospatial hazard prediction. The findings hold significant implications for land-use planning, disaster management, and environmental conservation in vulnerable regions worldwide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822027PMC
http://dx.doi.org/10.1038/s41598-025-87587-3DOI Listing

Publication Analysis

Top Keywords

landslide susceptibility
16
gradient boosting
12
susceptibility zones
12
high high
12
susceptibility prediction
8
recursive feature
8
feature elimination
8
extremely randomized
8
randomized trees
8
boosting xgboost
8

Similar Publications

Earthquake hazards, such as strong ground motion, liquefaction, and landslides, pose significant threats to structures built on seismically vulnerable, loose, and saturated sandy soils. Therefore, a structural failure evaluation method that accounts for site-specific seismic responses is essential for developing effective and appropriate earthquake hazard mitigation strategies. In this study, a real-time assessment framework for structural seismic susceptibility is developed.

View Article and Find Full Text PDF

The preparation of accurate multi-hazard susceptibility maps is essential to effective disaster risk management. Past studies have relied mainly on traditional machine learning models, but these models do not perform well for complex spatial patterns. To address this gap, this study uses two meta-heuristic algorithms (Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)) to provide an optimized Random Forest (RF) model with better predictive ability.

View Article and Find Full Text PDF

Integrating Eco-DRR into landslide susceptibility assessment: The critical role of eco-environmental factors.

J Environ Manage

August 2025

Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalunya, Spain; Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Cerdanyola del Vallès, Catalunya, Spain. Electronic address:

Understanding the factors driving landslide susceptibility is essential for improving risk assessment and disaster management. Traditional assessments often emphasize structural factors such as topography and geology, while overlooking eco-environmental variables. In this case study from western Rwanda, we propose a multidimensional landslide susceptibility assessment framework grounded in Ecosystem-based Disaster Risk Reduction (Eco-DRR) principles, using a Random Forest model.

View Article and Find Full Text PDF

Coseismic landslides are among the most perilous geological disasters in hilly places after earthquakes. Precise assessment of coseismic landslide susceptibility is crucial for forecasting the effects of landslides and alleviating subsequent tragedies. This research formulates a comprehensive landslide hazard assessment model by integrating the Newmark physical model with machine learning techniques.

View Article and Find Full Text PDF

The southwestern mountainous region of China (SMRC), characterized by complex geological environments, experiences frequent landslide disasters that pose significant threats to local residents. This study focuses on the Qijiang District of Chongqing, where we conduct a systematic evaluation of wavelength and observation geometry effects on InSAR-based landslide monitoring. Utilizing multi-sensor SAR imagery (Sentinel-1 C-band, ALOS-2 L-band, and LUTAN-1 L-band) acquired between 2018 and 2025, we integrate time-series InSAR analysis with geological records, high-resolution topographic data, and field investigation findings to assess representative landslide-susceptible zones in the Qijiang District.

View Article and Find Full Text PDF