A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Acsbg1 regulates differentiation and inflammatory properties of CD4+ T cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epigenetic modifications are critical for the regulation of CD4+ T cell differentiation and function. Previously, we identified Acyl-CoA Synthetase Bubble Gum 1 (Acsbg1), a gene involved in fatty acid metabolism, as part of an epigenetic signature that was selectively demethylated in ex vivo isolated T helper 17 (TH17) cells. However, its functional relevance for CD4+ T cells remains incompletely understood. Here, we used in vitro differentiation assays and the adoptive transfer colitis model to investigate the role of Acsbg1 in the differentiation and function of TH1, TH17, and regulatory T (Treg) cells. In vitro, Acsbg1 was expressed in both TH17 and in vitro-induced Treg (iTreg) cells, whereas TH1 cells lacked Acsbg1 expression. Accordingly, Acsbg1 deficiency resulted in impaired TH17 and iTreg differentiation, whereas TH1 differentiation was unaffected. In vivo, upon adoptive transfer of Acsbg1⁻/⁻ Tnaïve cells, immunodeficient recipient mice exhibited an exacerbated colitis, characterized by an altered balance of TH17 and Treg cells, indicating that Acsbg1 expression is essential for optimal TH17 and Treg cell differentiation and function. Our findings highlight the importance of fatty acid (FA) metabolism in maintaining immune homeostasis by regulating T cell differentiation and provide novel insights into the metabolic targeting of inflammatory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925188PMC
http://dx.doi.org/10.1556/1886.2025.00003DOI Listing

Publication Analysis

Top Keywords

differentiation function
12
differentiation
8
cells
8
cd4+ cells
8
cell differentiation
8
fatty acid
8
acid metabolism
8
adoptive transfer
8
treg cells
8
acsbg1 expression
8

Similar Publications