98%
921
2 minutes
20
Introduction: Brain steady-state gamma oscillations evoked using a non-invasive medical device (Spectris) have shown potential clinical benefits in patients with mild-moderate Alzheimer's disease (AD), including reduced functional and cognitive decline, reduced brain volume and myelin loss, and increased brain functional connectivity. We analyzed changes in cerebrospinal fluid (CSF) proteins after Spectris treatment in mild cognitive impairment (MCI) and their relationship to established biological pathways implicated in AD.
Methods: Unbiased proteomic analysis of CSF samples from participants with amyloid-positive MCI ( = 10) was conducted from the FLICKER (NCT03543878) clinical trial. Participants used the Cognito Therapeutics medical device (Spectris), confirmed to evoke steady-state gamma oscillations. Participants were instructed to use the device daily for 1 hour each day during the trial. CSF was collected prior to the start of stimulation and after 4 and 8 weeks of treatment. The proteome was analyzed using tandem mass tag mass spectrometry.
Results: Differential expression analysis of proteins at baseline and after 8 weeks of treatment ( = 5) revealed that 110 out of 2951 proteins met the significance threshold (analysis of variance, < 0.05, no false discovery rate). Sixty proteins were upregulated, and 50 proteins were downregulated after treatment. Changes in protein expression were mapped to the consensus human AD protein network, representing co-expressed and functionally linked modules linked to cell type and biochemical pathways. Treatment altered CSF proteins linked to AD-related brain proteome modules, including those involved in myelination (proteolipid protein 1, ecotropic viral integration site 2A), synaptic and neuroimmune functions, and regulation of cellular lipid transportation. Biological pathway analysis revealed that most impacted pathways were associated with lipoproteins, cholesterol, phospholipids processing, and phosphatidylcholine biosynthesis.
Discussion: The CSF proteomic changes observed in this study suggest pleiotropic effects on multiple pathways involved in AD, including myelination, synaptic and neuroimmune function, and lipid transport. These findings are also consistent with observations of white matter and myelin preservation after Spectris treatment of AD.
Highlights: We analyzed changes in cerebrospinal fluid (CSF) proteins in response to sensory-evoked gamma oscillations in individuals with mild cognitive impairment.Sensory evoked steady-state gamma oscillations were evoked by Spectris medical device.Changes in CSF proteins were observed after 8 weeks of daily 1 hour treatment.Affected proteins were related to myelination, synaptic and neuroimmune functions, and regulation of cellular lipid transportation.Proteomic changes support clinical outcomes and myelin preservation of Spectris treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812123 | PMC |
http://dx.doi.org/10.1002/trc2.70051 | DOI Listing |
Alzheimer's disease (AD) has traditionally been addressed through biochemical interventions targeting amyloid and tau pathologies. However, these approaches are constrained by high costs, limited accessibility, and suboptimal efficacy. This article introduces a novel, physics-based therapeutic modality: noninvasive neuromodulation via synchronized visual and auditory stimulation to restore gamma frequency brain rhythms.
View Article and Find Full Text PDFIntroduction: Brain steady-state gamma oscillations evoked using a non-invasive medical device (Spectris) have shown potential clinical benefits in patients with mild-moderate Alzheimer's disease (AD), including reduced functional and cognitive decline, reduced brain volume and myelin loss, and increased brain functional connectivity. We analyzed changes in cerebrospinal fluid (CSF) proteins after Spectris treatment in mild cognitive impairment (MCI) and their relationship to established biological pathways implicated in AD.
Methods: Unbiased proteomic analysis of CSF samples from participants with amyloid-positive MCI ( = 10) was conducted from the FLICKER (NCT03543878) clinical trial.
Front Neurol
October 2024
Cognito Therapeutics, Inc, Cambridge, MA, United States.
Objective: To examine the impact of 40Hz gamma stimulation on the preservation of the corpus callosum, a critical structure for interhemispheric connectivity, in people with mild cognitive impairment or Alzheimer's disease.
Methods: OVERTURE (NCT03556280) participants were randomized 2:1 (Active:Sham) to receive daily, 1-h, 40Hz gamma sensory stimulation or sham treatment for 6 months. Structural magnetic resonance imaging data were analyzed to assess changes in corpus callosum area ( = 50; 33 for active, 17 for sham).
Mol Ther Nucleic Acids
September 2024
National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 566-0002, Japan.
RNase H-dependent antisense oligonucleotides (gapmer ASOs) represent a class of nucleic acid therapeutics that bind to target RNA to facilitate RNase H-mediated RNA cleavage, thereby regulating the expression of disease-associated proteins. Integrating artificial nucleic acids into gapmer ASOs enhances their therapeutic efficacy. Among these, amido-bridged nucleic acid (AmNA) stands out for its potential to confer high affinity and stability to ASOs.
View Article and Find Full Text PDFPediatr Radiol
September 2012
Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7206, USA.
Background: Catheter rupture during CT angiography has prompted policies prohibiting the use of electronic injectors with peripherally inserted central venous catheters (PICCs) not only for CT but also for MRI. Consequently, many institutions mandate hand injection for MR angiography, limiting precision of infusion rates and durations of delivery.
Objective: To determine whether electronic injection of gadolinium-based contrast media through a range of small-caliber, single-lumen PICCs would be safe without risk of catheter rupture over the range of clinical protocols and determine whether programmed flow rates and volumes were realized when using PICCs for contrast delivery.