A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Head Motion in Diffusion Magnetic Resonance Imaging: Quantification, Mitigation, and Structural Associations in Large, Cross-Sectional Datasets Across the Lifespan. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Head motion during diffusion magnetic resonance imaging (MRI) scans can cause numerous artifacts and biases subsequent quantification. However, a thorough characterization of motion across multiple scans, cohorts, and consortiums has not been performed. To address this, we designed a study with three aims. First, we aimed to characterize subject motion across several large cohorts, utilizing 13 cohorts comprised of 16,995 imaging sessions (age 0.1-100 years, mean age = 63 years; 7220 females; 3175 cognitively impaired adults; 471 developmentally delayed children) to describe the magnitude and directions of subject movement. Second, we aimed to investigate whether state-of-the-art diffusion preprocessing pipelines mitigate biases in quantitative measures of microstructure and connectivity by taking advantage of datasets with scan-rescan acquisitions and ask whether there are detectable differences between the same subjects when scans and rescans have differing levels of motion. Third, we aimed to investigate whether there are structural connectivity differences between movers and non-movers. We found that (1) subjects typically move 1-2 mm/min with most motion as translation in the anterior-posterior direction and rotation around the right-left axis; (2) Modern preprocessing pipelines can effectively mitigate motion to the point where biases are not detectable with current analysis techniques; and (3) There are no apparent differences in microstructure or macrostructural connections in participants who exhibit high motion versus those that exhibit low motion. Overall, characterizing motion magnitude and directions, as well as motion correlates, informs and improves motion mitigation strategies and image processing pipelines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814480PMC
http://dx.doi.org/10.1002/hbm.70143DOI Listing

Publication Analysis

Top Keywords

motion
11
head motion
8
motion diffusion
8
diffusion magnetic
8
magnetic resonance
8
resonance imaging
8
magnitude directions
8
aimed investigate
8
preprocessing pipelines
8
imaging quantification
4

Similar Publications