[SLFN11 inhibition rescues the Fanconi anemia phenotype by stabilizing stalled replication forks].

Rinsho Ketsueki

Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fanconi anemia (FA) is a rare hereditary disorder characterized by hypersensitivity to the interstrand crosslinks (ICLs) induced by cisplatin, mitomycin C, or formaldehyde. We found that inhibition of SLFN11, which has been identified as a dominant determinant of responses to various antitumor drugs such as cisplatin, camptothecin, and PARP inhibitors, rescued ICL sensitivity and partially alleviated FA phenotype by stabilizing replication forks. This suggests that SLFN11 intensifies DNA damage sensitivity in FA cells, and could be a novel therapeutic target for the FA phenotype. We also found that human SLFN11 and mouse Slfn8/9 share a functional similarity. In this review, we summarize the interplay between SLFN11 and DNA damage, including functional analysis of SLFN11 and its mouse ortholog.

Download full-text PDF

Source
http://dx.doi.org/10.11406/rinketsu.65.1353DOI Listing

Publication Analysis

Top Keywords

fanconi anemia
8
phenotype stabilizing
8
dna damage
8
slfn11 mouse
8
slfn11
5
[slfn11 inhibition
4
inhibition rescues
4
rescues fanconi
4
anemia phenotype
4
stabilizing stalled
4

Similar Publications

Background: Immunotherapy holds significant yet underexplored potential for low-grade glioma (LGG) treatment. We therefore interrogated the role of Fanconi Anemia Complementation Group C (FANCC) as a novel immune checkpoint regulator given its spatial correlation with tumor microenvironments and clinical associations with immunosuppressive markers.

Objectives: FANCC is implicated in various tumor progressions; its role in LGG remains unexplored.

View Article and Find Full Text PDF

Purpose: Germ cell tumors (GCTs) are a heterogeneous group of neoplasms that predominantly affect adolescents and young adults. Notably, geographical disparities in GCT incidence exist, with higher rates observed in East Asia. Although numerous studies have established links between heterozygous germline mutations in Fanconi anemia (FA) genes and the development of certain human cancers, the association between germline pathogenic or likely pathogenic (P/LP) variants in FA genes and the relative risk of developing GCTs remains incompletely characterized.

View Article and Find Full Text PDF

Introduction: We recently identified variants in 10 genes that are members of either the p53 pathway or Fanconi Anemia Complex (FAC), regulators of the DNA repair (DNA damage response; DDR) in 17 cases with Pediatric Acute-Onset Neuropsychiatry Syndrome (PANS) or regression in autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDD). We aimed to identify additional cases with genetic vulnerabilities in DDR and related pathways.

Methods: Whole exome sequencing (WES) data from 32 individuals were filtered and analyzed to identify ultrarare pathogenic or likely pathogenic variants.

View Article and Find Full Text PDF

Guanine-rich nucleic acid sequences can adopt G-quadruplex (G4) structures, which pose barriers to DNA replication and repair. The FANCJ helicase contributes to genome stability by resolving these structures, a function linked to its G4-binding site that features an AKKQ amino acid motif. This site is thought to recognize oxidatively damaged G4, specifically those containing 8-oxoguanine (8oxoG) modifications.

View Article and Find Full Text PDF

: Fanconi Anemia (FA) is a rare disorder, characterized by chromosomal instability, congenital abnormalities, progressive bone marrow failure, and predisposition to cancer. FA is caused by pathogenic variants in any of the 23 () linked genes. : Retrospective analysis of 13 FA patients with a causative variant was performed.

View Article and Find Full Text PDF