Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Beta-diversity is a fundamental ecological metric for exploring dissimilarities between microbial communities. On the functional dimension, metaproteomics data can be used to quantify beta-diversity to understand how microbial community functional profiles vary under different environmental conditions. Conventional approaches to metaproteomic functional beta-diversity often treat protein functions as independent features, ignoring the evolutionary relationships among microbial taxa from which different proteins originate. A more informative functional distance metric that incorporates evolutionary relatedness is needed to better understand microbiome functional dissimilarities.
Results: Here, we introduce PhyloFunc, a novel functional beta-diversity metric that incorporates microbiome phylogeny to inform on metaproteomic functional distance. Leveraging the phylogenetic framework of weighted UniFrac distance, PhyloFunc innovatively utilizes branch lengths to weigh between-sample functional distances for each taxon, rather than differences in taxonomic abundance as in weighted UniFrac. Proof of concept using a simulated toy dataset and a real dataset from mouse inoculated with a synthetic gut microbiome and fed different diets show that PhyloFunc successfully captured functional compensatory effects between phylogenetically related taxa. We further tested a third dataset of complex human gut microbiomes treated with five different drugs to compare PhyloFunc's performance with other traditional distance methods. PCoA and machine learning-based classification algorithms revealed higher sensitivity of PhyloFunc in microbiome responses to paracetamol. We provide PhyloFunc as an open-source Python package (available at https://pypi.org/project/phylofunc/ ), enabling efficient calculation of functional beta-diversity distances between a pair of samples or the generation of a distance matrix for all samples within a dataset.
Conclusions: Unlike traditional approaches that consider metaproteomics features as independent and unrelated, PhyloFunc acknowledges the role of phylogenetic context in shaping the functional landscape in metaproteomes. In particular, we report that PhyloFunc accounts for the functional compensatory effect of taxonomically related species. Its effectiveness, ecological relevance, and enhanced sensitivity in distinguishing group variations are demonstrated through the specific applications presented in this study. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817178 | PMC |
http://dx.doi.org/10.1186/s40168-024-02015-4 | DOI Listing |