A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering tobacco for efficient astaxanthin production using a linker-free monocistronic dual-protein expression system and interspecific hybridization method. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The high-value carotenoid astaxanthin is biosynthesized through a dual-enzyme-catalyzed cascade and is getting increased attention for engineered biosynthesis in plants. When developing astaxanthin-producing tobacco by expressing 2A-peptide-linked CBFD (carotenoid β-ring-4-dehydrogenase) and HBFD (carotenoid 4-hydroxy-β-ring-4-dehydrogenase) from Adonis aestivalis, this work discovered an in-enzyme splicing site at the N-terminus of HBFD that has potentials for multiple protein expression in plant using monocistronic cassette. Based on this finding, we generated astaxanthin-producing tobacco plants expressing a directly fused protein of CBFD and HBFD with a monocistronic cassette. Further integrated IP (immunoprecipitation) and LC-MS/MS assays revealed the presence of an in-enzyme splicing site at the N-terminus of HBFD. Nevertheless, the obtained astaxanthin-producing tobacco plants exhibited a growth retardation as observed by previous researches. Subsequent studies revealed that the astaxanthin-producing caused growth retardation of tobacco was correlated with chloroplast disruption and chlorophyll reduction, and it could be alleviated by expressing a chlorophyll biosynthetic enzyme identified by proteomics. Additionally, crossing the astaxanthin-producing tobacco with a variety having higher chlorophyll content also alleviated the growth retardation caused by astaxanthin production, and improved the total astaxanthin yield per plant by at least threefold along with the biomass increase. This work provides novel approaches for expressing multiple proteins in tobacco and for engineering efficient astaxanthin-producing tobacco.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2025.109607DOI Listing

Publication Analysis

Top Keywords

astaxanthin-producing tobacco
20
growth retardation
12
astaxanthin production
8
in-enzyme splicing
8
splicing site
8
site n-terminus
8
n-terminus hbfd
8
monocistronic cassette
8
tobacco plants
8
tobacco
7

Similar Publications