Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Present study deals with the green fabrication of copper oxide nanoparticles (CuO NPs) employing cell-free aqueous extract of Cladophora glomerata (L.) Kuetz, freshwater algal species. The UV-visible, FTIR, XRD, FESEM, HRTEM, EDX, BET, XPS and Raman spectroscopic techniques were used to confirm and characterize the biosynthesized CuO NPs. The UV-Vis analysis revealed a sharp peak at 264 nm with a band gap of 3.7 eV, which was attributable to the fabrication of CuO NPs. FESEM and HRTEM detect the spherical-shaped morphology with size between 40 and 50 nm. The biochemical profiling of cell free extract of the C. glomerata by Gas chromatography-mass spectrometry (GC-MS) revealed the presence of various bioactive biomolecules that may acts as a precursor for the fabrication of CuO NPs. The antibacterial study of fabricated CuO NPs revealed significant growth inhibitory potential against selected bacterial strains Klebsiella pneumoniae and Bacillus cereus with an IC value of 10 μg/ml. The synthesized CuO NPs also displayed strong DPPH radical scavenging (IC value 11.25 mg/L) and total antioxidant (IC value 11 mg/L) properties. Further, the anticancer activity of fabricated CuO NPs was studied employing a human hepatocellular carcinoma (HepG2) cell line by MTT assay, which marks their ability to diminish the 50% cell with IC value of 168.6 µg/ml. Overall, the findings confirmed that CuO NPs fabricated employing cell-free extract of C. glomerata have the potential to be used as active agent in various biomedical applications after further detailed clinical investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-025-03133-5DOI Listing

Publication Analysis

Top Keywords

cuo nps
32
copper oxide
8
oxide nanoparticles
8
cladophora glomerata
8
glomerata kuetz
8
biomedical applications
8
cuo
8
nps
8
employing cell-free
8
fesem hrtem
8

Similar Publications

The emergence of new types of pollutants and the increase of anthropogenic load on the environment provoked an increased interest of researchers to study the toxic effects of pollutants on living organisms. This study is devoted to investigate the physiological response of the Black Sea phytoplankton community to the effects of ZnO, CuO and TiO nanoparticles (NPs) of different concentrations by creating in vitro model microcosms. Trends of changes in the ratio between phytoplankton groups (cyanobacteria-picoeukaryotic algae-nano-microphytoplankton), species composition, growth rates and functional state of cells under the influence of the studied nanoparticles were revealed.

View Article and Find Full Text PDF

Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.

View Article and Find Full Text PDF

Numerous studies have demonstrated the antiproliferative potential of copper-based nanoparticles (Cu-based NPs) in antibacterial and anticancer applications. This study investigates how thermal annealing influences the structural, optical, and antibacterial properties of Cu-based NPs. X-ray diffraction (XRD) analysis revealed a monoclinic CuSO(OH) phase for the as-prepared powder, and monoclinic CuO phase after annealing, alongside a notable increase in crystallite size from 8.

View Article and Find Full Text PDF

Biopolymer-based composite films were primed by incorporating alginate and zein natural polymers using a solution-casting method and superbly assisted by eco-friendly prepared copper oxide nanoparticles (CuO NPs). The influence of the addition method of CaCl as a crosslinker and CuO NPs loading content (0.1, 0.

View Article and Find Full Text PDF

The continuous increase in population and industrial activity in several areas, including textiles, leather, plastics, cosmetics, and food processing, produces harmful organic pollutants such as azo dyes, which are harmful to aquatic life and cause water pollution. The remediation of these dyes using photo-responsive metallic nanoparticles (NPs) has become a viable technique for the purification of water. This study synthesized ZnO NPs, CuO NPs, and ZnO/CuO nanocomposites using leaf extract.

View Article and Find Full Text PDF