A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

ChatGPT-4o's Performance in Brain Tumor Diagnosis and MRI Findings: A Comparative Analysis with Radiologists. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objectives: To evaluate the accuracy of ChatGPT-4o in identifying magnetic resonance imaging (MRI) findings and diagnosing brain tumors by comparing its performance with that of experienced radiologists.

Materials And Methods: This retrospective study included 46 patients with pathologically confirmed brain tumors who underwent preoperative MRI between January 2021 and October 2024. Two experienced radiologists and ChatGPT 4o independently evaluated the anonymized MRI images. Eight questions focusing on MRI sequences, lesion characteristics, and diagnoses were answered. ChatGPT-4o's responses were compared to those of the radiologists and the pathology outcomes. Statistical analyses were performed, which included accuracy, sensitivity, specificity, and the McNemar test, with p<0.05 considered to indicate a statistically significant difference.

Results: ChatGPT-4o successfully identified 44 of the 46 (95.7%) lesions; it achieved 88.3% accuracy in identifying MRI sequences, 81% in perilesional edema, 79.5% in signal characteristics, and 82.2% in contrast enhancement. However, its accuracy in localizing lesions was 53.6% and that in distinguishing extra-axial from intra-axial lesions was 26.3%. As such, ChatGPT-4o achieved success rates of 56.8% and 29.5% for differential diagnoses and most likely diagnoses when compared to 93.2-90.9% and 70.5-65.9% for radiologists, respectively (p<0.005).

Conclusion: ChatGPT-4o demonstrated high accuracy in identifying certain MRI features but underperformed in diagnostic tasks in comparison with the radiologists. Despite its current limitations, future updates and advancements have the potential to enable large language models to facilitate diagnosis and offer a reliable second opinion to radiologists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2025.01.033DOI Listing

Publication Analysis

Top Keywords

mri findings
8
brain tumors
8
mri
5
chatgpt-4o's performance
4
performance brain
4
brain tumor
4
tumor diagnosis
4
diagnosis mri
4
findings comparative
4
comparative analysis
4

Similar Publications