Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Serine protease homolog (SPH) with a clip domain is crucial for activating prophenoloxidase. In this study, we isolated and characterized an SPH gene from Macrobrachium nipponense, designated as MnSPH. The full-length cDNA sequence of MnSPH was 1709 bp, including an open reading frame of 1383 bp that encoded 460 amino acids. The predicted MnSPH protein contained a signal peptide, two low-density complex regions, and a Tryp_SPc domain. Although SMART was unable to predict a clip domain in MnSPH, it does possess a conserved cysteine pattern that resembles the characteristic pattern of clip domains. Phylogenetic analysis revealed that MnSPH first clustered with SPH of Pacifastacus leniusculus and subsequently formed a clade with other SPHs or prophenoloxidase-activating factors (PPAFs) from crustaceans. MnSPH exhibited high expression levels in the gills and stomach of M. nipponense, with relatively lower expression in other tissues. Upon infection with Vibrio parahaemolyticus and Staphylococcus aureus, the expression levels of MnSPH were significantly upregulated at multiple time points in the hemocytes of M. nipponense. Furthermore, the knockdown of MnSPH in the hemocytes resulted in the inhibition of several antimicrobial peptide (AMP) genes and a significant reduction in phenoloxidase activity. The survival rate of prawns was reduced after MnSPH knockdown. These findings suggested that MnSPH plays a pivotal role in the innate immune response of M. nipponense during pathogen infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2025.110177DOI Listing

Publication Analysis

Top Keywords

mnsph
10
serine protease
8
protease homolog
8
macrobrachium nipponense
8
clip domain
8
expression levels
8
nipponense
5
characterization serine
4
homolog macrobrachium
4
nipponense involvement
4

Similar Publications

Serine protease homolog (SPH) with a clip domain is crucial for activating prophenoloxidase. In this study, we isolated and characterized an SPH gene from Macrobrachium nipponense, designated as MnSPH. The full-length cDNA sequence of MnSPH was 1709 bp, including an open reading frame of 1383 bp that encoded 460 amino acids.

View Article and Find Full Text PDF

In this study, a clip-domain serine proteinase homolog designated as MnSPH was cloned and characterized from a freshwater prawn Macrobrachium nipponense. The full-length cDNA of MnSPH was 1897 bp and contained a 1701 bp open reading frame (ORF) encoding a protein of 566 amino acids, a 103 bp 5'-untranslated region, and a 93 bp 3'-untranslated region. Sequence comparison showed that the deduced amino acids of MnSPH shared 30-59% identity with sequences reported in other animals.

View Article and Find Full Text PDF

It is commonly accepted that adult neurogenesis and gliogenesis follow the same principles through the mammalian class. However, it has been reported that neurogenesis might differ between species, even from the same order, like in rodents. Currently, it is not known if neural stem/progenitor cells (NSPCs) from various species differ in their cell identity and potential.

View Article and Find Full Text PDF