Comparative functional analysis of a new CDR1-like ABC transporter gene in multidrug resistance and virulence between Magnaporthe oryzae and Trichophyton mentagrophytes.

Cell Commun Signal

State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fungi are notorious for causing diseases in plants and domestic animals. ABC transporters play pivotal roles in multidrug resistance in fungi, with some ABC proteins indispensable for the pathogenicity of plant fungal pathogens. However, the roles of ABC proteins in animal pathogenic fungi, and the functional connections between ABC homologues in plant and animal pathogenic fungi are largely obscure. Here, we identified a new ABCG-1 gene, MoCDR1, in rice-blast fungus Magnaporthe oryzae. MoCDR1 disruption caused hypersensitivity to multidrugs, and impaired conidiation, appressorium formation, and pathogenicity. Subsequently, we systematically retrieved ABC proteins in animal pathogenic fungus Trichophyton mentagrophytes and identified TmCdr1, a homologue to MoCdr1. TmCDR1 effectively rescued the drug sensitivity and virulence of ΔMocdr1 and mediated the drug resistance and animal skin infection in T. mentagrophytes. Moreover, MoCDR1 also rescued the defects in drug sensitivity and virulence of ΔTmcdr1. MoCdr1 and TmCdr1 are conserved in structures and functions, and both involved in drug resistance and pathogenicity by analogously regulating gene expression levels related to transporter activity, MAPK signaling pathway, and metabolic processes. Altogether, our results represent the first comprehensive characterization of ABC genes in T. mentagrophytes, establishing a functional correlation between homologous ABC genes in plant and animal pathogenic fungi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806632PMC
http://dx.doi.org/10.1186/s12964-024-02022-wDOI Listing

Publication Analysis

Top Keywords

animal pathogenic
16
abc proteins
12
pathogenic fungi
12
abc
8
multidrug resistance
8
magnaporthe oryzae
8
trichophyton mentagrophytes
8
proteins animal
8
plant animal
8
mocdr1 tmcdr1
8

Similar Publications

Cathepsin Z is a conserved susceptibility factor underlying tuberculosis severity.

PLoS Biol

September 2025

Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America.

Tuberculosis (TB) outcomes vary widely, from asymptomatic infection to mortality, yet most animal models do not recapitulate human phenotypic and genotypic variation. The genetically diverse Collaborative Cross mouse panel models distinct facets of TB disease that occur in humans and allows identification of genomic loci underlying clinical outcomes. We previously mapped a TB susceptibility locus on mouse chromosome 2.

View Article and Find Full Text PDF

Effects and Mechanisms of Lactiplantibacillus plantarum G83 on Enterotoxigenic Escherichia coli (ETEC)-Induced Intestinal Inflammation.

Probiotics Antimicrob Proteins

September 2025

Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.

Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.

View Article and Find Full Text PDF

Demystifying the link between periodontitis and oral cancer: a systematic review integrating clinical, pre-clinical, and in vitro data.

Cancer Metastasis Rev

September 2025

Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA.

Chronic inflammation and microbial dysbiosis have been implicated in the development of head and neck squamous cell carcinoma (HNSCC), particularly oral cavity squamous cell carcinoma (OSCC). Periodontitis is a common chronic inflammatory disease characterized by the progressive destruction of tooth-supporting structures. While periodontitis Has been associated with an increased risk of OSCC in epidemiological and mechanistic studies, the strength of this association is unclear.

View Article and Find Full Text PDF

Host-pathogen interactions involve two critical strategies: resistance, whereby hosts clear invading microbes, and tolerance, whereby hosts carry high pathogen burden asymptomatically. Here, we investigate mechanisms by which Salmonella-superspreader (SSP) hosts maintain an asymptomatic state during chronic infection. We found that regulatory T cells (Tregs) are essential for this disease-tolerant state, limiting intestinal immunopathology and enabling SSP hosts to thrive, while facilitating Salmonella transmission.

View Article and Find Full Text PDF

Model Systems of Gammaherpesvirus Infection, Immunity, and Disease.

J Med Virol

September 2025

Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are oncogenic human gammaherpesviruses (GHVs) associated with a broad spectrum of malignancies and chronic diseases. However, direct studies of these viruses in humans are limited by ethical constraints, technical challenges, and their strict species specificity. To overcome these barriers, researchers have developed surrogate models, with murine gammaherpesvirus 68 (MHV68) emerging as a tractable and widely utilized system.

View Article and Find Full Text PDF