A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Higher-order triadic percolation on random hypergraphs. | LitMetric

Higher-order triadic percolation on random hypergraphs.

Phys Rev E

Queen Mary University of London, School of Mathematical Sciences, London E1 4NS, United Kingdom.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we propose a comprehensive theoretical framework combining percolation theory with nonlinear dynamics to study hypergraphs with a time-varying giant component. We consider in particular hypergraphs with higher-order triadic interactions. Higher-order triadic interactions occur when one or more nodes up-regulate or down-regulate a hyperedge. For instance, enzymes regulate chemical reactions involving multiple reactants. Here we propose and investigate higher-order triadic percolation on hypergraphs showing that the giant component can have a nontrivial dynamics. Specifically, we show that the fraction of nodes in the giant component undergoes a route to chaos in the universality class of the logistic map. In hierarchical higher-order triadic percolation, we extend this paradigm in order to treat hierarchically nested higher-order triadic interactions. We demonstrate the nontrivial effects of their increased combinatorial complexity on the critical phenomena and the dynamical properties of the process. Finally, we consider other generalizations of the model studying the effect of adopting interdependencies and node regulation instead of hyperedge regulation. The comprehensive theoretical framework presented here sheds light on possible scenarios for climate networks, biological networks, and brain networks, where the hypergraph connectivity changes over time.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.064315DOI Listing

Publication Analysis

Top Keywords

higher-order triadic
24
triadic percolation
12
giant component
12
triadic interactions
12
comprehensive theoretical
8
theoretical framework
8
higher-order
6
triadic
5
percolation
4
percolation random
4

Similar Publications