A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Geometrical interpretation of critical exponents. | LitMetric

Geometrical interpretation of critical exponents.

Phys Rev E

University of Brasilia, International Center of Physics, Institute of Physics, 70910-900 Brasilia, Federal District, Brazil.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We develop a hypothesis that the dynamics of equilibrium systems at criticality have their dynamics constricted to a fractal subspace. We relate the correlation fractal dimension associated with this subspace to the Fisher critical exponent controlling the singularity associated with the correlation function. This fractal subspace is different from that associated with the order parameter. We propose a relation between the correlation fractal dimension and the order parameter fractal dimension. The fractal subspace we identify has as a defining property that the correlation function is restored at the critical point by restricting the dynamics this way. We determine the correlation fractal dimension of the two-dimensional Ising model and validate it by computer simulations. We discuss growth models briefly in this context.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.110.L062107DOI Listing

Publication Analysis

Top Keywords

fractal dimension
16
fractal subspace
12
correlation fractal
12
correlation function
8
order parameter
8
fractal
7
correlation
5
geometrical interpretation
4
interpretation critical
4
critical exponents
4

Similar Publications