98%
921
2 minutes
20
Background: The rapid advancement of deep learning in health care presents significant opportunities for automating complex medical tasks and improving clinical workflows. However, widespread adoption is impeded by data privacy concerns and the necessity for large, diverse datasets across multiple institutions. Federated learning (FL) has emerged as a viable solution, enabling collaborative artificial intelligence model development without sharing individual patient data. To effectively implement FL in health care, robust and secure infrastructures are essential. Developing such federated deep learning frameworks is crucial to harnessing the full potential of artificial intelligence while ensuring patient data privacy and regulatory compliance.
Objective: The objective is to introduce an innovative FL infrastructure called the Personal Health Train (PHT) that includes the procedural, technical, and governance components needed to implement FL on real-world health care data, including training deep learning neural networks. The study aims to apply this federated deep learning infrastructure to the use case of gross tumor volume segmentation on chest computed tomography images of patients with lung cancer and present the results from a proof-of-concept experiment.
Methods: The PHT framework addresses the challenges of data privacy when sharing data, by keeping data close to the source and instead bringing the analysis to the data. Technologically, PHT requires 3 interdependent components: "tracks" (protected communication channels), "trains" (containerized software apps), and "stations" (institutional data repositories), which are supported by the open source "Vantage6" software. The study applies this federated deep learning infrastructure to the use case of gross tumor volume segmentation on chest computed tomography images of patients with lung cancer, with the introduction of an additional component called the secure aggregation server, where the model averaging is done in a trusted and inaccessible environment.
Results: We demonstrated the feasibility of executing deep learning algorithms in a federated manner using PHT and presented the results from a proof-of-concept study. The infrastructure linked 12 hospitals across 8 nations, covering 4 continents, demonstrating the scalability and global reach of the proposed approach. During the execution and training of the deep learning algorithm, no data were shared outside the hospital.
Conclusions: The findings of the proof-of-concept study, as well as the implications and limitations of the infrastructure and the results, are discussed. The application of federated deep learning to unstructured medical imaging data, facilitated by the PHT framework and Vantage6 platform, represents a significant advancement in the field. The proposed infrastructure addresses the challenges of data privacy and enables collaborative model development, paving the way for the widespread adoption of deep learning-based tools in the medical domain and beyond. The introduction of the secure aggregation server implied that data leakage problems in FL can be prevented by careful design decisions of the infrastructure.
Trial Registration: ClinicalTrials.gov NCT05775068; https://clinicaltrials.gov/study/NCT05775068.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843053 | PMC |
http://dx.doi.org/10.2196/60847 | DOI Listing |
J Ultrasound Med
September 2025
Department of Ultrasound, Donghai Hospital Affiliated to Kangda College of Nanjing Medical University, Lianyungang, China.
Objective: The aim of this study is to evaluate the prognostic performance of a nomogram integrating clinical parameters with deep learning radiomics (DLRN) features derived from ultrasound and multi-sequence magnetic resonance imaging (MRI) for predicting survival, recurrence, and metastasis in patients diagnosed with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC).
Methods: This retrospective, multicenter study included 103 patients with histopathologically confirmed TNBC across four institutions. The training group comprised 72 cases from the First People's Hospital of Lianyungang, while the validation group included 31 cases from three external centers.
Comput Methods Biomech Biomed Engin
September 2025
School of Medicine, Tzu Chi University, Hualien, Taiwan.
This study explores deep feature representations from photoplethysmography (PPG) signals for coronary artery disease (CAD) identification in 80 participants (40 with CAD). Finger PPG signals were processed using multilayer perceptron (MLP) and convolutional neural network (CNN) autoencoders, with performance assessed via 5-fold cross-validation. The CNN autoencoder model achieved the best results (recall 96.
View Article and Find Full Text PDFTransl Vis Sci Technol
September 2025
Department of Ophthalmology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA.
Purpose: To evaluate choroidal vasculature using a novel three-dimensional algorithm in fellow eyes of patients with unilateral chronic central serous chorioretinopathy (cCSC).
Methods: Patients with unilateral cCSC were retrospectively included. Automated choroidal segmentation was conducted using a deep-learning ResUNet model.
J Integr Neurosci
August 2025
School of Computer Science, Guangdong Polytechnic Normal University, 510665 Guangzhou, Guangdong, China.
Background: Emotion recognition from electroencephalography (EEG) can play a pivotal role in the advancement of brain-computer interfaces (BCIs). Recent developments in deep learning, particularly convolutional neural networks (CNNs) and hybrid models, have significantly enhanced interest in this field. However, standard convolutional layers often conflate characteristics across various brain rhythms, complicating the identification of distinctive features vital for emotion recognition.
View Article and Find Full Text PDFJ Pharm Anal
August 2025
Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces. Here we have developed a deep learning algorithm, GPT2 Ion Channel Classifier (GPT2-ICC), which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins. GPT2-ICC integrates representation learning with a large language model (LLM)-based classifier, enabling highly accurate identification of potential ion channels.
View Article and Find Full Text PDF