Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Large-scale DNA screening of palaeontological and archaeological collections remains a limiting and costly factor for ancient DNA studies. Several DNA extraction protocols are routinely used in ancient DNA laboratories and have even been automated on robotic platforms. Robots offer a solution for high-throughput screening but the costs, as well as necessity for trained technicians and engineers, can be prohibitive for some laboratories. Here, we present a high-throughput alternative to robot-based ancient DNA extraction using a 96-column plate. When compared to routine single MinElute columns, we retrieved highly similar endogenous DNA contents, an important metric in ancient DNA screening. Mitogenomes with a coverage depth greater than 0.1× could be generated and allowed for taxonomic assignment. However, average fragment lengths, DNA damage and library complexities significantly differed between methods but these differences became nonsignificant after modification of our library purification protocol. Our high-throughput extraction method allows generation of 96 extracts within approximately 4 hours of laboratory work while bringing the cost down by ~39% compared to using single columns. Additionally, we formally demonstrate that the addition of Tween-20 during the elution step results in higher complexity libraries, thereby enabling higher genome coverage for the same sequencing effort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969639 | PMC |
http://dx.doi.org/10.1111/1755-0998.14077 | DOI Listing |