A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

ZFP-CanPred: Predicting the effect of mutations in zinc-finger proteins in cancers using protein language models. | LitMetric

ZFP-CanPred: Predicting the effect of mutations in zinc-finger proteins in cancers using protein language models.

Methods

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036 India; International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501 Japan. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zinc-finger proteins (ZNFs) constitute the largest family of transcription factors and play crucial roles in various cellular processes. Missense mutations in ZNFs significantly alter protein-DNA interactions, potentially leading to the development of various types of cancers. This study presents ZFP-CanPred, a novel deep learning-based model for predicting cancer-associated driver mutations in ZNFs. The representations derived from protein language models (PLMs) from the structural neighbourhood of mutated sites were utilized to train ZFP-CanPred for differentiating between cancer-causing and neutral mutations. ZFP-CanPred, achieved a superior performance with an accuracy of 0.72, F1-score of 0.79, and area under the Receiver Operating Characteristics (ROC) Curve (AUC) of 0.74, on an independent test set. In a comparative analysis against 11 existing prediction tools using a curated dataset of 331 mutations, ZFP-CanPred demonstrated the highest AU-ROC of 0.74, outperforming both generic and cancer-specific methods. The model's balanced performance across specificity and sensitivity addresses a significant limitation of current methodologies. The source code and other related files are available on GitHub at https://github.com/amitphogat/ZFP-CanPred.git. We envisage that the present study contributes to understand the oncogenic processes and developing targeted therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2025.01.020DOI Listing

Publication Analysis

Top Keywords

zinc-finger proteins
8
protein language
8
language models
8
mutations znfs
8
mutations zfp-canpred
8
zfp-canpred
5
mutations
5
zfp-canpred predicting
4
predicting mutations
4
mutations zinc-finger
4

Similar Publications