A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fully automated identification of Neisseria meningitidis using the BD MAX system in a clinical laboratory setting: A preliminary study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid and accurate identification of Neisseria meningitidis, a pathogen that causes invasive infections and meningitis, is crucial for its effective clinical management and infection control. However, identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry may misidentify other Neisseria species as N. meningitidis, thus necessitating confirmatory tests based on biochemical properties. These tests require high bacterial concentrations that are achieved through subculturing, which can increase biosafety risks in laboratories. In this study, we developed a real-time polymerase chain reaction detection system for N. meningitidis using the BD MAX automated genetic testing platform. We then evaluated its accuracy using 25 strains of clinically isolated Neisseria species, including N. meningitidis. Our detection results were in full agreement with those of sequencing-based identification, with a minimum detection sensitivity of 10 CFU/mL. The BD MAX system completes all measurements in a closed system, allowing for the rapid and precise identification of N. meningitidis while reducing laboratory biosafety risks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jiac.2025.102648DOI Listing

Publication Analysis

Top Keywords

identification neisseria
8
neisseria meningitidis
8
meningitidis max
8
max system
8
neisseria species
8
biosafety risks
8
meningitidis
6
identification
5
fully automated
4
automated identification
4

Similar Publications