Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The rapid and accurate identification of Neisseria meningitidis, a pathogen that causes invasive infections and meningitis, is crucial for its effective clinical management and infection control. However, identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry may misidentify other Neisseria species as N. meningitidis, thus necessitating confirmatory tests based on biochemical properties. These tests require high bacterial concentrations that are achieved through subculturing, which can increase biosafety risks in laboratories. In this study, we developed a real-time polymerase chain reaction detection system for N. meningitidis using the BD MAX automated genetic testing platform. We then evaluated its accuracy using 25 strains of clinically isolated Neisseria species, including N. meningitidis. Our detection results were in full agreement with those of sequencing-based identification, with a minimum detection sensitivity of 10 CFU/mL. The BD MAX system completes all measurements in a closed system, allowing for the rapid and precise identification of N. meningitidis while reducing laboratory biosafety risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jiac.2025.102648 | DOI Listing |