A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Eye saccades align optic flow with retinal specializations during object pursuit in freely moving ferrets. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During prey pursuit, how eye rotations, such as saccades, enable continuous tracking of erratically moving targets while enabling an animal to navigate through the environment is unknown. To better understand this, we measured head and eye rotations in freely running ferrets during pursuit behavior. By also tracking the target and all environmental features, we reconstructed the animal's visual fields and their relationship to retinal structures. In the reconstructed visual fields, the target position clustered on and around the high-acuity retinal area location, the area centralis, and surprisingly, this cluster was not significantly shifted by digital removal of either eye saccades, exclusively elicited when the ferrets made turns, or head rotations that were tightly synchronized with the saccades. Here, we show that, while the saccades did not fixate the moving target with the area centralis, they instead aligned the area centralis with the intended direction of travel. This also aligned the area centralis with features of the optic flow pattern, such as flow direction and focus of expansion, used for navigation by many species. While saccades initially rotated the eyes in the same direction as the head turn, saccades were followed by eye rotations countering the ongoing head rotation, which reduced image blur and limited information loss across the visual field during head turns. As we measured the same head and eye rotational relationship in freely moving tree shrews, rats, and mice, we suggest that these saccades and counter-rotations are a generalized mechanism enabling mammals to navigate complex environments during pursuit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2024.12.032DOI Listing

Publication Analysis

Top Keywords

area centralis
16
eye rotations
12
eye saccades
8
optic flow
8
freely moving
8
measured head
8
head eye
8
visual fields
8
aligned area
8
saccades
7

Similar Publications