Succinylation enables IDE to act as a hub of larval tissue destruction and adult tissue reconstruction during insect metamorphosis.

Sci Adv

Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metamorphosis is an important way for insects to adapt to the environment. In this process, larval tissue destruction regulated by 20-hydroxyecdysone (20E) and adult tissue reconstruction regulated by insulin-like peptides (ILPs) occur simultaneously, but the detailed mechanism is still unclear. Here, the results of succinylome, subcellular localization, and protein interaction analysis show that non-succinylated insulin-degrading enzyme (IDE) localizes in the cytoplasm, binds to insulin-like growth factor 2 (IGF-2-like), and degrades it. When the metamorphosis is initiated, 20E up-regulated carnitine palmitoyltransferase 1A () through transcription factor Krüppel-like factor 15 (KLF15), thus increasing the level of IDE succinylation on K179. Succinylated IDE translocated from cytoplasm to nucleus, combined with ecdysone receptor to promote 20E signaling pathway, causing larval tissue destruction, while IGF-2-like was released to promote adult tissue proliferation. That is, succinylation alters subcellular localization of IDE so that it can bind to different target proteins and act as a hub of metamorphosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797550PMC
http://dx.doi.org/10.1126/sciadv.ads0643DOI Listing

Publication Analysis

Top Keywords

larval tissue
12
tissue destruction
12
adult tissue
12
tissue reconstruction
8
subcellular localization
8
tissue
6
ide
5
succinylation enables
4
enables ide
4
ide hub
4

Similar Publications

Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.

View Article and Find Full Text PDF

Taenia crassiceps (Zeder, 1800), a zoonotic cestode with a wide geographical distribution, utilises canids as definitive hosts and small rodents as intermediate hosts. However, accidental infections in non-human primates, particularly in captive lemurs, have been increasingly documented. In this case report, we describe the first documented case of cysticercosis caused by the larval stage of T.

View Article and Find Full Text PDF

Distinct cellular and molecular mechanisms contribute to the specificity of the two Drosophila melanogaster chitin synthases in chitin deposition.

PLoS Genet

September 2025

Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Department of Cells and Tissues, Parc Científic de Barcelona, Barcelona, Spain.

Chitin is a major component of arthropod extracellular matrices, including the exoskeleton and the midgut peritrophic matrix. It plays a key role in the development, growth and viability of insects. Beyond the biological importance of this aminopolysaccharide, chitin also receives considerable attention for its practical applications in medicine and biotechnology, as it is a superior biopolymer with excellent physicochemical and mechanical properties.

View Article and Find Full Text PDF

Toxocariasis, a neglected zoonotic disease caused by parasites of the genus, represents a significant public health concern, with an estimated global seroprevalence of 19%. Despite the well-known respiratory symptoms associated with toxocariasis, the immune response in the lungs during toxocariasis is still poorly understood. This study analyzes both local lung and systemic immune response to infection and excretory-secretory antigens (TES) intranasal application in C57BL/6J mice.

View Article and Find Full Text PDF

Functional analysis of Sf-NPF1 in food intake and antifeedant induction by azadirachtin in Spodoptera frugiperda larvae.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Azadirachtin, a highly effective botanical pesticide, demonstrated notable biological activities against Spodoptera frugiperda, including mortality induction, growth and development inhibition, and antifeedant effects. Neuropeptide F (NPF) has been shown to play a role in various physiological processes in insects. Nonetheless, the functions of Sf-NPF1 in regulating food intake and antifeedant induction by azadirachtin in S.

View Article and Find Full Text PDF