A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integrating radiological and clinical data for clinically significant prostate cancer detection with machine learning techniques. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In prostate cancer (PCa), risk calculators have been proposed, relying on clinical parameters and magnetic resonance imaging (MRI) enable early prediction of clinically significant cancer (CsPCa). The prostate imaging-reporting and data system (PI-RADS) is combined with clinical variables predominantly based on logistic regression models. This study explores modeling using regularization techniques such as ridge regression, LASSO, elastic net, classification tree, tree ensemble models like random forest or XGBoost, and neural networks to predict CsPCa in a dataset of 4799 patients in Catalonia (Spain). An 80-20% split was employed for training and validation. We used predictor variables such as age, prostate-specific antigen (PSA), prostate volume, PSA density (PSAD), digital rectal exam (DRE) findings, family history of PCa, a previous negative biopsy, and PI-RADS categories. When considering a sensitivity of 0.9, in the validation set, the XGBoost model outperforms others with a specificity of 0.640, followed closely by random forest (0.638), neural network (0.634), and logistic regression (0.620). In terms of clinical utility, for a 10% missclassification of CsPCa, XGBoost can avoid 41.77% of unnecessary biopsies, followed closely by random forest (41.67%) and neural networks (41.46%), while logistic regression has a lower rate of 40.62%. Using SHAP values for model explainability, PI-RADS emerges as the most influential risk factor, particularly for individuals with PI-RADS 4 and 5. Additionally, a positive digital rectal examination (DRE) or family history of prostate cancer proves highly influential for certain individuals, while a previous negative biopsy serves as a protective factor for others.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794621PMC
http://dx.doi.org/10.1038/s41598-025-88297-6DOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
logistic regression
12
random forest
12
neural networks
8
digital rectal
8
family history
8
previous negative
8
negative biopsy
8
closely random
8
prostate
5

Similar Publications