A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient and Symmetric Temperature Control in Capillary Electrophoresis I: Tying Cooling Capillaries Around Analytical Capillaries. | LitMetric

Efficient and Symmetric Temperature Control in Capillary Electrophoresis I: Tying Cooling Capillaries Around Analytical Capillaries.

J Sep Sci

Laboratory of Instrumentation and Automation in Analytical Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The heat generated by the Joule effect during capillary electrophoresis (CE) runs creates radial temperature gradients in the separation medium. These temperature gradients cause zone dispersion in addition to molecular diffusion. This severely limits the field strengths that can be applied during the runs, especially when solutions with high ionic conductivity are used. This greatly increases run times, especially when high separation efficiencies are sought. In this work, the author proposes tying cooling capillaries (fused silica microtubes) along the external surface of the analytical capillary, allowing the circulation of coolants to efficiently and symmetrically control temperature in CE. The author deduced, step-by-step, the three master equations that serve as guidelines to produce a good match and tightly secure cooling capillaries along the outer surface of analytical capillaries. Additionally, an automated capillary tying machine was developed and demonstrated. Sets were produced with: four, five, and six cooling capillaries tied around one analytical capillary. The outer diameters of the capillaries used (one analytical and cooling) and the values of the remaining voids left between the first and last cooling capillary are in good agreement with the predictions of the three master equations deduced in this work. To the author's knowledge, this is the first time that cooling capillaries were tied around analytical capillaries to produce an efficient and symmetric cooling system for CE and toroidal capillary electrophoresis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.70081DOI Listing

Publication Analysis

Top Keywords

cooling capillaries
20
analytical capillaries
12
capillaries
9
efficient symmetric
8
capillary electrophoresis
8
cooling
8
tying cooling
8
capillaries analytical
8
temperature gradients
8
surface analytical
8

Similar Publications