Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Previous deep learning-based brain network research has made significant progress in understanding the pathophysiology of schizophrenia. However, it ignores the three-dimensional spatial characteristics of EEG signals and cannot dynamically learn the interactions between nodes. To address this issue, a schizophrenia classification model based on a three-dimensional adaptive graph convolutional neural network (3D-AGCN) is proposed. Each subject's EEG data is divided into various segment lengths and frequency bands for the experiment. The attention mechanism is then used to integrate the node features in the spatial, feature, and frequency band dimensions. The resulting adaptive brain functional network features are then constructed and fed into the GAT + GCN model. This adaptive approach eliminates the human-specified criteria for feature selection and brain network construction. The trial results demonstrated that, when using a 6-second segment length and time-domain and frequency-domain features, patients with first-episode schizophrenia achieved the highest classification accuracy of 87.64% This method outperforms other feature selection and brain network modeling approaches, providing new insights and directions for the early diagnosis and recognition of schizophrenia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790975 | PMC |
http://dx.doi.org/10.1038/s41598-024-84497-8 | DOI Listing |