Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Four-dimensional dynamic contrast-enhanced breast CT (4D DCE-bCT) offers promising high-resolution spatial and temporal imaging capabilities for the characterization and monitoring of breast tumors. However, the optimal combination of parameters for iodine quantification in image space remains to be determined.

Purpose: This study aims to optimize a dedicated bCT system to perform long dynamic contrast-enhanced scans with high spatio-temporal resolution while maintaining a reasonable radiation dose.

Methods: Our protocol includes the acquisition of a high-quality prior image that is reconstructed with a polychromatic iterative algorithm (IMPACT). The acquisition of the post-contrast sequence is continuous but sparse and these images are reconstructed using prior image constrained compressed sensing (PICCS). A four-step optimization process is performed using images of a physical phantom. First, the optimal tube current is selected by taking the noise level into account. Second, the optimal number of angles is selected based on the absence of streak artifacts. Third, the number of iterations in IMPACT is specified at the lowest value that achieves the highest spatial resolution. Finally, the number of iterations in PICCS is determined based on the quantitative accuracy of a range of iodine concentrations.

Results: When a high-quality prior image is available, the imaging of post-contrast images can be performed using just 40 projection angles with a tube current of 32 mA. The noise level in the post-contrast images is inherited from the prior image and no streak artifacts are visible. Mean difference between the linear attenuation coefficients of samples containing iodine reconstructed with IMPACT using all 360 projections and PICCS using 40 projections is 0.0004 at most. The spatial resolution of images reconstructed with PICCS is lower than the one of IMPACT images and is concentration dependent. The cut-off frequency at 10% modulation transfer function drops from 1.55 in the prior image to 0.9 when the target with the largest concentration is evaluated. The total mean glandular dose of the protocol does not exceed 22.5 mGy.

Conclusions: This study found the optimal acquisition and reconstruction parameters for a low-dose dynamic contrast-enhanced bCT protocol. The numerical accuracy of the proposed protocol was ensured by performing a physical phantom study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972051PMC
http://dx.doi.org/10.1002/mp.17658DOI Listing

Publication Analysis

Top Keywords

prior image
20
dynamic contrast-enhanced
16
contrast-enhanced breast
8
iodine quantification
8
high-quality prior
8
images reconstructed
8
tube current
8
noise level
8
streak artifacts
8
number iterations
8

Similar Publications

Background: Bone marrow (BM) lesion differentiation remains challenging, and quantitative magnetic resonance imaging (MRI) may enhance accuracy over conventional methods. We evaluated the diagnostic value and inter-reader reliability of Dixon-based signal drop (%drop) and fat fraction percentage (%fat) as adjuncts to existing protocols.

Materials And Methods: In this prospective two-center study, 172 patients with BM signal abnormalities underwent standardized 1.

View Article and Find Full Text PDF

Background: Transcatheter pulmonary valve implantation (TPVI) has emerged as a viable alternative to surgical pulmonary valve replacement for patients with congenital heart disease and right ventricular outflow tract dysfunction. However, its adoption in low-resource settings has been limited.

Case Summary: We report the first successful TPVI procedures in Tanzania.

View Article and Find Full Text PDF

Purpose: Adaptive optics scanning light ophthalmoscopy (AOSLO) paired with intravitreal injection of a viral vector coding for the calcium indicator GCaMP has enabled visualization of neuronal activity in retinal ganglion cells (RGCs) at single cell resolution in the living eye. However, the inner limiting membrane (ILM) restricts viral transduction to the fovea in humans and non-human primates, hindering both therapeutic intervention and physiological study of the retina. To address this issue, we explored peeling the ILM before intravitreal injection to expand calcium imaging beyond the fovea in the living primate eye.

View Article and Find Full Text PDF

Background: Thrombotic thrombocytopenic purpura (TTP) is a life-threatening hematologic emergency caused by ADAMTS13 deficiency, leading to microvascular thrombosis, haemolytic anaemia, thrombocytopenia, and end-organ damage. Neurological symptoms occur in up to 90% of cases and are frequently misdiagnosed as stroke. Prompt recognition and treatment reduce the mortality rate from over 90% to 10-20%.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF