Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background & Aims: Hepatoblastoma is the most common pediatric cancer of the liver, with the majority of cases displaying activating mutations in the Wnt/β-catenin pathway. Understanding the complex milieu of the tumor microenvironment has resulted in promising new therapies for adult cancers, but similar approaches in pediatric cancers are still lacking. We aimed to provide a comprehensive analysis of the tumor microenvironment of hepatoblastoma, unveiling its spatial architecture and key signaling mechanisms.

Methods: Single-cell/-nucleus RNA-sequencing (RNA-seq) (n = 15), spatial transcriptomics (n = 22), and multiplex immunofluorescence stainings (n = 7) of treated, untreated, and metastasized pediatric hepatoblastomas were performed. An RNA-seq validation cohort (n = 110) including hepatoblastoma, non-tumor and fetal liver samples and single-cell RNA-seq data of healthy immune cells were used for further analysis. Western blotting and RNA-seq of hepatoblastoma and macrophage cell lines were conducted for experimental validation.

Results: Of four identified transcriptional tumor programs, "Developmental" and "Metabolic" reflected different hepatic differentiation stages, while "Cycling" was enriched in undifferentiated cells and relapsed samples, and "Intermediate" displayed high activity in samples from patients with poor outcomes. We discovered an increased ratio of anti-to pro-inflammatory immune cells and evidence of immune exclusion from tumor areas. Wnt-responsive upregulation of the immunomodulator midkine in hepatoblastoma cells was associated with a change in macrophage phenotype, which could be partially reversed through midkine inhibition.

Conclusions: Hepatoblastoma cells exist along a continuous spectrum of hepatic differentiation and inhabit an altered immune environment. Wnt signaling augments midkine expression, which appears to be involved in shaping the immune environment by modifying macrophages to enable immune evasion, thereby providing a potential therapeutic target.

Impact And Implications: Despite hepatoblastoma being the most common pediatric liver cancer, there has been a critical knowledge gap in understanding how the tumor microenvironment and immune landscape contribute to disease progression. Our novel findings, revealing a continuous spectrum of tumor differentiation states and Wnt-MDK-driven immune evasion, are significant for pediatric oncology clinicians and researchers, improving our functional understanding of the immune environment of hepatoblastoma. The identification of midkine as a tumor-specific immunomodulator suggests a potential for developing new targeted therapies, though further mechanistic and practical validation would be needed to realize clinical translation of these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2025.01.031DOI Listing

Publication Analysis

Top Keywords

continuous spectrum
12
immune evasion
12
tumor microenvironment
12
immune environment
12
immune
10
hepatoblastoma
9
wnt-mdk-driven immune
8
hepatoblastoma common
8
common pediatric
8
immune cells
8

Similar Publications

Signatures of selective sweeps in continuous-space populations.

Genetics

September 2025

Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA.

Selective sweeps describe the process by which an adaptive mutation arises and rapidly fixes in the population, thereby removing genetic variation in its genomic vicinity. The expected signatures of selective sweeps are relatively well understood in panmictic population models, yet natural populations often extend across larger geographic ranges where individuals are more likely to mate with those born nearby. To investigate how such spatial population structure can affect sweep dynamics and signatures, we simulated selective sweeps in populations inhabiting a two-dimensional continuous landscape.

View Article and Find Full Text PDF

Amyloidosis encompasses a spectrum of rare disorders characterized by extracellular amyloid deposition. Achieving an accurate early diagnosis of systemic amyloidosis necessitates biopsy-specific pathological evaluation. Formalin-fixed, paraffin-embedded liver biopsy specimens were examined using Congo red staining, electron microscopy, immunohistochemistry (IHC), immunofluorescence, and Congo red-assisted laser microdissection with mass spectrometry (LMD/MS).

View Article and Find Full Text PDF

Multidisciplinary team management of caesarean scar ectopic pregnancy progressing to a live birth and caesarean hysterectomy at 34 weeks: A case report.

Case Rep Womens Health

October 2025

The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.

Progression of a caesarean scar ectopic pregnancy (CSEP) to a live birth is exceptionally rare. Whether the placenta should be removed during a caesarean section for patients with a CSEP complicated by severe placenta accreta spectrum remains unclear. This report presents the case of a 42-year-old multigravida with two prior caesarean sections who presented with CSEP at 6 weeks.

View Article and Find Full Text PDF

Objectives: Urinary tract infections (UTIs) are among the most common infections worldwide, with being the predominant pathogen, particularly, in women. The rise of antimicrobial resistance, especially due to extended-spectrum β-lactamase-producing , has significantly limited treatment options, posing a serious public health concern. Rational antibiotic use and continuous monitoring of resistance patterns are essential to address this challenge.

View Article and Find Full Text PDF

Review of engineered magnetic chitosan nanoparticles for drug delivery: Advances, challenges, and future prospects.

Int J Biol Macromol

September 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand. Electronic address:

Magnetic chitosan nanoparticles represent a promising platform in targeted drug delivery by merging the biocompatibility and mucoadhesiveness of chitosan with the superparamagnetic iron-oxide cores magnetite (Fe₃O₄) or maghemite (γ-Fe₂O₃). This synergy enables enhanced therapeutic precision through external magnetic guidance, controlled release, and stimuli-responsive behavior. MCNPs are particularly valuable in oncology, allowing site-specific drug delivery, magnetic hyperthermia, and real-time imaging via MRI.

View Article and Find Full Text PDF