Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant bioengineering is a time-consuming and labor-intensive process with no guarantee of achieving desired traits. Here, we present a fast, automated, scalable, high-throughput pipeline for plant bioengineering (FAST-PB) in maize (Zea mays) and Nicotiana benthamiana. FAST-PB enables genome editing and product characterization by integrating automated biofoundry engineering of callus and protoplast cells with single-cell matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). We first demonstrated that FAST-PB could streamline Golden Gate cloning, with the capacity to construct 96 vectors in parallel. Using FAST-PB in protoplasts, we found that PEG2050 increased transfection efficiency by over 45%. For proof-of-concept, we established a reporter-gene-free method for CRISPR editing and phenotyping via mutation of high chlorophyll fluorescence 136. We show that diverse lipids were enhanced up to 6-fold using CRISPR activation of lipid controlling genes. In callus cells, an automated transformation platform was employed to regenerate plants with enhanced lipid traits through introducing multigene cassettes. Lastly, FAST-PB enabled high-throughput single-cell lipid profiling by integrating MALDI-MS with the biofoundry, protoplast, and callus cells, differentiating engineered and unengineered cells using single-cell lipidomics. These innovations massively increase the throughput of synthetic biology, genome editing, and metabolic engineering and change what is possible using single-cell metabolomics in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850301PMC
http://dx.doi.org/10.1093/plcell/koaf026DOI Listing

Publication Analysis

Top Keywords

cells automated
8
plant bioengineering
8
genome editing
8
cells single-cell
8
callus cells
8
cells
5
fast-pb
5
enhancing lipid
4
lipid production
4
production plant
4

Similar Publications

Objective: Aim: To evaluate clinical applicability of immune mediator's interleukin-16, immunoglobulin E along with eosinophil count in diagnosing COVID-19 and determining its severity.

Patients And Methods: Materials and Methods: Cross-sectional case-control study was conducted at Al-Najaf General Hospital, Najaf, Iraq between March and August 2024. 120 participants: 60 confirmed COVID-19 cases and 60 healthy controls which matched cases in terms of age and sex.

View Article and Find Full Text PDF

Deep feature engineering for accurate sperm morphology classification using CBAM-enhanced ResNet50.

PLoS One

September 2025

School of Computer Science, CHART Laboratory, University of Nottingham, Nottingham, United Kingdom.

Background And Objective: Male fertility assessment through sperm morphology analysis remains a critical component of reproductive health evaluation, as abnormal sperm morphology is strongly correlated with reduced fertility rates and poor assisted reproductive technology outcomes. Traditional manual analysis performed by embryologists is time-intensive, subjective, and prone to significant inter-observer variability, with studies reporting up to 40% disagreement between expert evaluators. This research presents a novel deep learning framework combining Convolutional Block Attention Module (CBAM) with ResNet50 architecture and advanced deep feature engineering (DFE) techniques for automated, objective sperm morphology classification.

View Article and Find Full Text PDF

Background: Improving efficiency and reducing turnaround time are crucial in clinical laboratories. While automated analyzers such as the Beckman Coulter DxH 900 streamline workflow, subtle abnormalities like blasts and immature granulocytes (IGs) may be missed, especially in the absence of WBC-related suspect messages. This study evaluated whether integrating cell population data (CPD) with instrument messages could enhance detection accuracy.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Flexible and robust cell-type annotation for highly multiplexed tissue images.

Cell Syst

September 2025

Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Identifying cell types in highly multiplexed images is essential for understanding tissue spatial organization. Current cell-type annotation methods often rely on extensive reference images and manual adjustments. In this work, we present a tool, the Robust Image-Based Cell Annotator (RIBCA), that enables accurate, automated, unbiased, and fine-grained cell-type annotation for images with a wide range of antibody panels without requiring additional model training or human intervention.

View Article and Find Full Text PDF