Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Upper aerodigestive squamous cell carcinoma (UASCC) is an aggressive and lethal neoplasm, with its early neoplastic transformation mechanisms remaining poorly understood. Here, we characterize over 25 genetically-defined organoid models derived from murine and human oral/esophageal tissues harboring key driver mutations. Double knockout of and induced morphological dysplasia, hyperproliferation, loss of squamous differentiation, and tumorigenicity, which were further exacerbated by additional driver mutations (e.g., , , ). Single-cell analysis revealed an expansion of quiescent basal cells and proliferative squamous cells, alongside a loss of differentiated squamous cells during malignant transformation. A distinct senescence program, regulated by ANXA1, was markedly diminished during early neoplastic evolution. Mechanistically, the ANXA1-SMAD3-p27 pathway was identified as a critical regulator of this senescence program, acting to suppress neoplastic features in organoid models. Lastly, our high-throughput, single-organoid-resolution drug screens unexpectedly revealed -driven organoids exhibited sensitivity to Mitomycin C and Onalespib. This study provides novel mechanistic insights into early neoplastic evolution and underscores the value of genetically-defined organoid models for investigating cancer biology and identifying targeted therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785044PMC
http://dx.doi.org/10.1101/2025.01.18.631624DOI Listing

Publication Analysis

Top Keywords

organoid models
16
neoplastic evolution
12
early neoplastic
12
squamous cell
8
genetically-defined organoid
8
driver mutations
8
squamous cells
8
senescence program
8
squamous
5
neoplastic
5

Similar Publications

Adeno-associated virus (AAV) vectors are widely used in gene therapy, particularly for liver-targeted treatments. However, predicting human-specific outcomes, such as transduction efficiency and hepatotoxicity, remains challenging. Reliable models are urgently needed to bridge the gap between preclinical studies and clinical applications.

View Article and Find Full Text PDF

Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used.

View Article and Find Full Text PDF

Unravelling the molecular network structure of biohybrid hydrogels.

Mater Today Bio

October 2025

Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.

Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.

View Article and Find Full Text PDF

Genome editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, have transformed biomedical research by enabling precise genetic modifications. Due to its efficiency, cost-effectiveness and versatility, CRISPR has been widely applied across various stages of research, from fundamental biological investigations in preclinical models to potential therapeutic interventions. In nephrology, CRISPR represents a groundbreaking tool for elucidating the molecular mechanisms underlying kidney diseases and developing innovative therapeutic approaches.

View Article and Find Full Text PDF

Organoids: their emerging essential role in pathological mechanisms and drug discovery of diabetes and its complications.

Front Pharmacol

August 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China.

Diabetes mellitus is a metabolic disease with a high global prevalence, which affects blood vessels throughout the entire body. As the disease progresses, it often leads to complications, including diabetic retinopathy and nephropathy. Currently, in addition to traditional cellular and animal models, more and more organoid models have been used in the study of diabetes and have broad application prospects in the field of pharmacological research.

View Article and Find Full Text PDF