A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

SAFE-CAST: secure AI-federated enumeration for clustering-based automated surveillance and trust in machine-to-machine communication. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Machine-to-machine (M2M) communication within the Internet of Things (IoT) faces increasing security and efficiency challenges as networks proliferate. Existing approaches often struggle with balancing robust security measures and energy efficiency, leading to vulnerabilities and reduced performance in resource-constrained environments. To address these limitations, we propose SAFE-CAST, a novel secure AI-federated enumeration for clustering-based automated surveillance and trust framework. This study addresses critical security and efficiency challenges in M2M communication within the context of IoT. SAFE-CAST integrates several innovative components: (1) a federated learning approach using Lloyd's K-means algorithm for secure clustering, (2) a quality diversity optimization algorithm (QDOA) for secure channel selection, (3) a dynamic trust management system utilizing blockchain technology, and (4) an adaptive multi-agent reinforcement learning for context-aware transmission scheme (AMARLCAT) to minimize latency and improve scalability. Theoretical analysis and extensive simulations using network simulator (NS)-3.26 demonstrate the superiority of SAFE-CAST over existing methods. The results show significant improvements in energy efficiency (21.6% reduction), throughput (14.5% increase), security strength (15.3% enhancement), latency (33.9% decrease), and packet loss rate (12.9% reduction) compared to state-of-the-art approaches. This comprehensive solution addresses the pressing need for robust, efficient, and secure M2M communication in the evolving landscape of IoT and edge computing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784817PMC
http://dx.doi.org/10.7717/peerj-cs.2551DOI Listing

Publication Analysis

Top Keywords

m2m communication
12
secure ai-federated
8
ai-federated enumeration
8
enumeration clustering-based
8
clustering-based automated
8
automated surveillance
8
surveillance trust
8
security efficiency
8
efficiency challenges
8
energy efficiency
8

Similar Publications