Preparation and characterization of LGR5 LOOP region-specific nanobodies.

Protein Expr Purif

State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China; University of Chinese Academy of Sciences, 100049, Beijing, China. Electronic address:

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), also known as G-protein-coupled receptor 49 (GPR49), is a class A G-protein-coupled receptor (GPCR) that plays a pivotal role in embryonic development and functions as a marker for adult stem cells in various tissues and organs. LGR5 possesses a large extracellular domain (ecto-domain) enriched with leucine-rich repeats (LRR), primarily responsible for binding to ligands such as R-spondins. The C-terminal LRR extracellular LOOP region of LGR5 refers to the loop structure connecting the C-terminus of LGR5 to the first transmembrane helix. As the LOOP region is located extracellularly, it is readily accessible to exogenous molecules such as antibodies, nanobodies, or small-molecule drugs. In this study, we successfully expressed and purified the LGR5 LOOP region protein in a prokaryotic expression system. The purified protein was subsequently used as an antigen to immunize camels, leading to the generation of nanobodies. These nanobodies are composed solely of the variable domain of the heavy-chain antibody (VHH), with a molecular weight of approximately 15 kDa. Using the purified LGR5 LOOP region protein as an antigen, we isolated nanobodies that specifically bind to it. Subsequent assays demonstrated that the selected nanobody, NB 4C4 and NB 3E8, specifically targeted the LGR5 LOOP region, exhibited an inhibitory effect on β-catenin-mediated Wnt signaling to a certain extent. This study provides insights for the development of LGR5-targeted diagnostic reagents and antibody-based therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2025.106680DOI Listing

Publication Analysis

Top Keywords

loop region
20
lgr5 loop
16
g-protein-coupled receptor
12
lgr5
8
purified lgr5
8
region protein
8
loop
7
nanobodies
5
region
5
preparation characterization
4

Similar Publications

Human parainfluenza virus 2 (HPIV-2) and human parainfluenza virus 4 (HPIV-4) are significant but underappreciated respiratory pathogens, particularly among high-risk populations including children, the elderly, and immunocompromised individuals. In this study, we sequenced 101 HPIV-2 and HPIV-4 genomes from respiratory samples collected in western Washington State and performed comprehensive evolutionary analyses using both new and publicly available sequences. Phylogenetic and phylodynamic analyses revealed that both HPIV-2 and HPIV-4 evolve at significantly faster rates compared to mumps virus, a reference human orthorubulavirus.

View Article and Find Full Text PDF

Population genetics plays a critical role in creating policies for managing fisheries, conservation, and development of aquaculture. The golden snapper, Lutjanus johnii (Bloch, 1792), is a highly commercial and aquaculture important snapper species. This study used mitochondrial markers D-loop (151 specimens) and Cytochrome b (Cyt-b, 120 specimens) from 10 populations, including populations from the east South China Sea, the west South China Sea and the Strait of Malacca to investigate the genetic diversity, population connectivity, and historical demography of L.

View Article and Find Full Text PDF

The microglial surface protein Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) plays a critical role in mediating brain homeostasis and inflammatory responses in Alzheimer's disease (AD). The soluble form of TREM2 (sTREM2) exhibits neuroprotective effects in AD, though the underlying mechanisms remain elusive. Moreover, differences in ligand binding between TREM2 and sTREM2, which have major implications for their roles in AD pathology, remain unexplained.

View Article and Find Full Text PDF

Neutral iron(III) and iron(II) complexes based on the pyruvic acid thiosemicarbazone (Hthpy) ligand [Fe(Hthpy)(thpy)] (1) and [Fe(Hthpy)] (2) were synthesized, and deeper insights into magneto-structural correlation were gained by FT-IR spectroscopy, single crystal X-ray crystallography, dc magnetic characterization, Fe Mössbauer spectroscopy, and DFT calculations. The X-ray structures of complex 1 were established for the HS ( = 5/2) state at 295 K and the LS ( = 1/2) state at 150 K. The crystal packing of 1 at these temperatures corresponds to the triclinic 1̄ symmetry and contains pairs of [Fe(Hthpy)(thpy)] complexes interconnected by a shortened S⋯S contact.

View Article and Find Full Text PDF

Phosphorylation plays an important role in the activity of CDK2 and inhibitor binding, but the corresponding molecular mechanism is still insufficiently known. To address this gap, the current study innovatively integrates molecular dynamics (MD) simulations, deep learning (DL) techniques, and free energy landscape (FEL) analysis to systematically explore the action mechanisms of two inhibitors (SCH and CYC) when CDK2 is in a phosphorylated state and bound state of CyclinE. With the help of MD trajectory-based DL, key functional domains such as the loops L3 loop and L7 are successfully identified.

View Article and Find Full Text PDF