A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Feature-targeted deep learning framework for pulmonary tumorous Cone-beam CT (CBCT) enhancement with multi-task customized perceptual loss and feature-guided CycleGAN. | LitMetric

Feature-targeted deep learning framework for pulmonary tumorous Cone-beam CT (CBCT) enhancement with multi-task customized perceptual loss and feature-guided CycleGAN.

Comput Med Imaging Graph

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077, Hong Kong SAR; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, 999077, Hong Kong SAR; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen,

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thoracic Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy (IGRT) to provide updated patient anatomy information for lung cancer treatments. However, CBCT images often suffer from streaking artifacts and noise caused by under-rate sampling projections and low-dose exposure, resulting in loss of lung anatomy which contains crucial pulmonary tumorous and functional information. While recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts, they have limited performance on preserving anatomical details containing crucial tumorous information due to lack of targeted guidance. To address this issue, we propose a novel feature-targeted deep learning framework which generates ultra-quality pulmonary imaging from CBCT of lung cancer patients via a multi-task customized feature-to-feature perceptual loss function and a feature-guided CycleGAN. The framework comprises two main components: a multi-task learning feature-selection network (MTFS-Net) for building up a customized feature-to-feature perceptual loss function (CFP-loss); and a feature-guided CycleGan network. Our experiments showed that the proposed framework can generate synthesized CT (sCT) images for the lung that achieved a high similarity to CT images, with an average SSIM index of 0.9747 and an average PSNR index of 38.5995 globally, and an average Pearman's coefficient of 0.8929 within the tumor region on multi-institutional datasets. The sCT images also achieved visually pleasing performance with effective artifacts suppression, noise reduction, and distinctive anatomical details preservation. Functional imaging tests further demonstrated the pulmonary texture correction performance of the sCT images, and the similarity of the functional imaging generated from sCT and CT images has reached an average DSC value of 0.9147, SCC value of 0.9615 and R value of 0.9661. Comparison experiments with pixel-to-pixel loss also showed that the proposed perceptual loss significantly enhances the performance of involved generative models. Our experiment results indicate that the proposed framework outperforms the state-of-the-art models for pulmonary CBCT enhancement. This framework holds great promise for generating high-quality pulmonary imaging from CBCT that is suitable for supporting further analysis of lung cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compmedimag.2024.102487DOI Listing

Publication Analysis

Top Keywords

perceptual loss
16
sct images
16
cbct enhancement
12
feature-guided cyclegan
12
lung cancer
12
feature-targeted deep
8
deep learning
8
learning framework
8
pulmonary tumorous
8
multi-task customized
8

Similar Publications