A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Theoretical insights on the double ESIPT mechanism and fluorescence properties of HBIo chromophore. | LitMetric

Theoretical insights on the double ESIPT mechanism and fluorescence properties of HBIo chromophore.

Spectrochim Acta A Mol Biomol Spectrosc

Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004 PR China. Electronic address:

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

2-{[3-(1H-benzoimidazol-2-yl)-2-hydroxy-5-methylbenzylidene] amino}-benzoic acid (HBIo) based on proton transfer can serve as the fluorescent probe for detecting heavy metal ions. The excited-state intramolecular proton transfer (ESIPT) reaction mechanism of the HBIo chromophore with an intramolecular asymmetric double hydrogen bond in different solvents are investigated. The reaction barrier of the ESIPT along hydrogen bond O1-H2···N3 is higher than that of ESIPT along O4-H5···N6, which indicates that the double ESIPT is a stepwise process. The time-evolving non-adiabatic excited-state dynamic simulations shows that the sequence ESIPT reactions on a time scale: the ESIPT along O1-H2···N3 is faster than the ESIPT along O4-H5···N6. The analyses of electron structure and spectra indicate that the double ESIPT couples with electron transfer, significantly enhances the fluorescence signal, thereby improving the performance of the fluorescent probe in detecting heavy metal ions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2025.125795DOI Listing

Publication Analysis

Top Keywords

double esipt
12
esipt
9
hbio chromophore
8
proton transfer
8
fluorescent probe
8
probe detecting
8
detecting heavy
8
heavy metal
8
metal ions
8
hydrogen bond
8

Similar Publications