A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Analyzing the Linker Structure of PROTACs throughout the Induction Process: Computational Insights. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Linker structures are a crucial component of proteolysis-targeting chimeras (PROTACs) and have traditionally been designed based on empirical methods, which presents significant challenges in the development of PROTACs. Current optimization strategies typically focus on reducing the number of rotatable bonds in the linker to limit conformational freedom. However, this approach overlooks the complexity of the target protein degradation process. Retrospective analyses suggest that merely adjusting the rotatable bonds in the linker is insufficient to control the conformational freedom of the PROTACs, indicating the need for new optimization strategies. By integration of computational methods such as molecular dynamics simulations, this study investigates the role of the linker throughout the induction process, particularly its impact on the formation and stability of the ternary complex. This approach offers potential for overcoming the limitations of traditional strategies, reducing reliance on empirical methods, and enhancing the overall efficiency and effectiveness of PROTAC design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.4c02637DOI Listing

Publication Analysis

Top Keywords

induction process
8
empirical methods
8
optimization strategies
8
rotatable bonds
8
bonds linker
8
conformational freedom
8
analyzing linker
4
linker structure
4
protacs
4
structure protacs
4

Similar Publications