Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life. The colonization of the calf intestinal microbiome dynamically changes from birth, increasing microbial richness and diversity until weaning, where further dynamic and drastic microbiome change occurs. In dairy calves, neonatal microbiome development prior to weaning is influenced by direct and indirect factors, some of which could be considered stressors, such as maternal interaction, environment, diet, husbandry and weaning practices. The specific impact of these can dictate intestinal microbial colonization, with potential lifelong consequences. Evidence suggests the potential detrimental effect that sudden changes and stress may have on calf health and growth due to management and husbandry practices, and the importance of establishing a stable yet diverse intestinal microbiome population at an early age is essential for calf success. The possibility of improving the health of calves through intestinal microbiome modulation and using alternative strategies including probiotic use, faecal microbiota transplantation and novel approaches of microbiome tracking should be considered to support animal health and sustainability of dairy production systems.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.001957DOI Listing

Publication Analysis

Top Keywords

dairy calves
12
intestinal microbiome
12
dairy calf
8
microbiome
8
growth development
8
calf intestinal
8
microbiome development
8
health growth
8
calf
6
intestinal
6

Similar Publications

In vitro simulation of rumen fermentation is critical for improving feed efficiency, assessing dietary interventions, and supporting methane mitigation strategies in ruminant production systems. However, existing fermentation platforms are often expensive, technically complex, or poorly suited for long-term microbial viability under near-rumen conditions-especially in resource-limited settings. This study presents the development and validation of a modular, low-cost engineered to replicate key physiological parameters of the rumen, including temperature control (39-40 °C), continuous buffering via artificial saliva infusion, anaerobic regulation, and simulated motility through mixing pumps.

View Article and Find Full Text PDF

Outbreak of post-parturient infectious pustular vulvovaginitis in a New Zealand dairy herd.

N Z Vet J

September 2025

Diagnostics, Readiness and Surveillance, Biosecurity New Zealand, Ministry for Primary Industries, Wellington, New Zealand.

Case History: In 2023, 160/245 (65%) 2-year-old KiwiCross dairy heifers from a seasonally calving Otago herd developed severe granular vulvovaginitis after calving.

Clinical Findings: Affected heifers presented 3-12 days post-calving with tail elevation, vaginal discharge and, in most cases, vulval swelling. Heifers were afebrile although some were inappetent.

View Article and Find Full Text PDF

Metabolic stress and negative energy balance (NEB) are typical undesirable accompanying phenomenon of the post-partum period in dairy cattle. They negatively affect not only milk production but also the reproductive abilities of the cow, and it is therefore desirable to recognize NEB early to prevent its development. Metabolic stress markers are traditionally total cholesterol (tChol), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB) and triacylglycerols (TAGs).

View Article and Find Full Text PDF

The objective of this ambidirectional observational cohort study was to explore how nonesterified fatty acids (NEFA) 22 to 35 d before calving were related to NEFA 1 to 14 d before calving and to determine a threshold that could be used to identify cows at risk of poor postpartum health. We enrolled 855 dairy cows from 46 herds, 362 prospectively and 493 retrospectively. The NEFA concentrations were measured during the far-off period (foNEFA; 3 to 5 wk before calving) and in the close-up period (cuNEFA; up to 2 wk before calving), and postpartum infectious and metabolic disorders, reproduction success, and culling were recorded.

View Article and Find Full Text PDF

The purpose of this study was to establish the effects of birth season on performance of first-lactation Holstein cows. Further analysis was conducted to determine if the impact of calving season was a more appropriate indicator. This study analyzed data from 2009 to 2022 and included 524 primiparous Holstein cows from the University of Illinois Urbana-Champaign Dairy Research Unit (Urbana, IL).

View Article and Find Full Text PDF