A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Highly efficient degradation of perfluoroalkyl substances (PFAS) by a novel polytetrafluoroetylene piezocatalyst. | LitMetric

Highly efficient degradation of perfluoroalkyl substances (PFAS) by a novel polytetrafluoroetylene piezocatalyst.

J Hazard Mater

School of Materials, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China. Electronic address:

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Perfluoroalkyl substances (PFAS) are environmentally persistent, bioaccumulative and toxic pollutants. However, thorough degradation of PFAS remains exceptionally difficult due to the high dissociation energy of the C-F bond. Here, we report a viable strategy to markedly degrade PFAS completely by capitalizing on a harmless polytetrafluoroetylene (PTFE) as a piezocatalyst. Remarkably, perfluorooctanoic acid (PFOA), as one of the widely used PFAS, was almost completely removed with a degradation rate of 93.4 % and a defluorination rate of 91.5 % by the ultrasound excitation of PTFE for 1 h. On the basis of the intermediate analysis, we proposed an oxidation mechanism for the piezocatalytic PFOA degradation. Furthermore, this strategy was also efficient for the degradation of perfluoroheptanoic acid (PFNA), perfluorooctane sulfonate (PFOS) and hexafluoropropylene oxide dimer acid (Gen-X), implying its effectiveness to remediate water containing multiple PFAS. Impressively, due to the diverse energy gap between HOMO and LUMO energy of various PFAS, the degradation reaction kinetics of different PFAS are of significant difference. This study provides the deep insight into the piezocatalytic technique for the remediation of persistent and disparate PFAS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137317DOI Listing

Publication Analysis

Top Keywords

pfas
9
efficient degradation
8
perfluoroalkyl substances
8
substances pfas
8
pfas completely
8
degradation
6
highly efficient
4
degradation perfluoroalkyl
4
pfas novel
4
novel polytetrafluoroetylene
4

Similar Publications