Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Variations in the proportions of the two major soybean [Glycine max (L.) Merr.] seed globulins, glycinin (11S) and β-conglycinin (7S), significantly affect the nutritional and functional properties of soy-based products, but comprehensive methods for the identification and quantification of individual subunits of these proteins are currently lacking. We developed an optimized reverse-phase ultra-performance liquid chromatography (RP-UPLC) method to analyze 11S and 7S protein contents in the seeds of three soybean varieties grown in different years. Using commercial protein standards and subunit-null varieties, we successfully identified and quantified all 11S and 7S protein subunits in Williams 82, Daepung, and Kwangan. The 11S + 7S proteins accounted for 72.6-76.2 %, 61.9-67.2 %, and 65.8-80.7 % of total proteins from these varieties (depending on cultivation year), with 11S/7S ratios of 1.82-2.28, 1.79-2.03, and 2.18-2.75, respectively. This RP-UPLC method is valuable for studying the physiochemical properties of soy-based products and selecting desirable varieties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.143019 | DOI Listing |