Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sleep entails significant changes in cerebral hemodynamics and metabolism. Yet, the way these processes evolve throughout wakefulness and sleep and their spatiotemporal dependence remain largely unknown. Here, by integrating a novel functional PET technique with simultaneous EEG-fMRI, we reveal a tightly coupled temporal progression of global hemodynamics and metabolism during the descent into NREM sleep, with large hemodynamic fluctuations emerging as global glucose metabolism declines, both of which track EEG arousal dynamics. Furthermore, we identify two distinct network patterns that emerge during NREM sleep: an oscillating, high-metabolism sensorimotor network remains active and dynamic, whereas hemodynamic and metabolic activity in the default-mode network is suppressed. These results elucidate how sleep diminishes awareness while preserving sensory responses, and uncover a complex, alternating balance of neuronal, hemodynamic, and metabolic dynamics in the sleeping brain. This work also demonstrates the potential of EEG-PET-MRI to explore neuro-hemo-metabolic dynamics underlying cognition and arousal in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761522PMC
http://dx.doi.org/10.1101/2025.01.17.633689DOI Listing

Publication Analysis

Top Keywords

hemodynamic metabolic
12
nrem sleep
12
metabolic dynamics
8
hemodynamics metabolism
8
sleep
6
simultaneous eeg-pet-mri
4
eeg-pet-mri identifies
4
identifies temporally
4
temporally coupled
4
coupled spatially
4

Similar Publications

Aim     To determine the prevalence and predictors for the development of newly diagnosed chronic heart failure (CHF) in patients with shortness of breath in long-term post-COVID syndrome.Material and methods            This screening cross-sectional clinical study was performed from April 2020 through April 2024, in two stages in an outpatient setting. At the first stage, 878 patients with shortness of breath were screened three or more months after COVID-19, and the presence of at least three diagnostic criteria for CHF, that were not in their history, was verified.

View Article and Find Full Text PDF

We describe the clinical presentation and evaluation of an 11-year-old girl with no reported past medical history, seen by her primary care physician for intermittent knee pain. Outpatient X-rays revealed findings concerning for rickets, prompting further evaluation with blood work. The patient was urgently referred to the emergency department due to abnormal laboratory results and was subsequently found to be in end-stage kidney disease with severe anemia, metabolic acidosis, and significant electrolyte abnormalities.

View Article and Find Full Text PDF

The vascular endothelium is responsible for regulating vascular tone, maintaining fluid homeo-stasis, and preventing platelet aggregation, exhibits regulatory properties in vasorelaxation and vasoconstriction - it produces, among others, nitric oxide and endothelin. The imbalance of vasoactive molecules leads to the loss of their function, known as endothelial dysfunction. Impaired endothelial function is observed in people with metabolic disorders, often preceding the onset of the disease by several years.

View Article and Find Full Text PDF

Model-driven meta-analysis establishes a new consensus view: Inhibitory neurons dominate BOLD-fMRI responses.

Comput Biol Med

September 2025

Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine

Functional magnetic resonance imaging (fMRI) is a pivotal tool for mapping neuronal activity in the brain. Traditionally, the observed hemodynamic changes are assumed to reflect the activity of the most common neuronal type: excitatory neurons. In contrast, recent experiments, using optogenetic techniques, suggest that the fMRI-signal could reflect the activity of inhibitory interneurons.

View Article and Find Full Text PDF

Objective: This study investigates the mechanisms behind exercise capacity in adults with type 2 diabetes mellitus (T2DM), focusing on central and peripheral components, as described by the Fick equation.

Methods: A cross-sectional study of 141 adults with T2DM was conducted, using cardiopulmonary exercise testing, near-infrared spectroscopy (NIRS) and exercise echocardiography. Participants with sufficient-quality NIRS data were stratified into tertiles based on percentage predicted VO₂peak.

View Article and Find Full Text PDF